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We present a parametric experimental study of convective electrokinetic instability
(EKI) in an isotropically etched, cross-shaped microchannel using quantitative
epifluorescence imaging. The base state is a three-inlet, one-outlet electrokinetic
focusing flow configuration where the centre sample stream and sheath flows have
mismatched ionic conductivities. Electrokinetic flows with conductivity gradients
become unstable when the electroviscous stretching and folding of conductivity
interfaces grows faster than the dissipative effect of molecular diffusion. Scalar images,
critical applied fields required for instability, and temporal and spatial scalar energy
are presented for flows with a wide range of applied d.c. electric field and centre-to-
sheath conductivity ratios. These parameters impose variations of the electric Rayleigh
number across four orders of magnitude. We introduce a scaling for charge density
in the bulk fluid as a function of local maximum conductivity gradients in the flow.
This scaling shows that the flow becomes unstable at a critical electric Rayleigh
number (Rae,� =205) and applies to a wide range of applied field and centre-to-
sheath conductivity ratios. This work is relevant to on-chip electrokinetic flows with
conductivity gradients such as field amplified sample stacking, flow at the intersections
of multi-dimensional assays, electrokinetic control and separation of sample streams
with poorly specified chemistry, and low-Reynolds number micromixing.

1. Introduction
Chip-based microfluidic devices for micro total analytical systems (µTAS) have been

studied extensively over the past fifteen years (see Manz, Graber & Widmer 1990).
These systems offer the potential of assays with increased sensitivity and resolution,
reduction of sample volume, and integration of multiple laboratory processes and
functions on a single platform. Comprehensive reviews of microfabrication, chip
designs, sensors, new functionality, and applications for µTAS have been presented (see
Vilkner, Janasek & Manz 2004). Some reviews have focused on engineering challenges
or the mechanics of dispersion and mixing (see Ghosal 2004; Locascio 2004; Stone,
Stroock & Ajdari 2004). Many of these devices use liquid-phase electrokinetic
phenomena to transport, separate and mix samples (see Harrison et al. 1992; Bruin
2000). Electrokinetics is a branch of electrohydrodynamics (EHD) that describes the
coupling of ion transport, fluid flow and electric fields and is distinguished from EHD
by the relevance of interface charge at solid–liquid interfaces (see Saville 1997). The
fluid flow in this class of devices is often stable and strongly damped by viscous
forces (with Reynolds numbers of order unity or smaller). However, heterogeneous
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ionic conductivity fields in the presence of applied electric fields can, under certain
conditions, generate an unstable flow field owing to electrokinetic instabilities (EKI).
Conductivity gradients are prevalent in on-chip electrokinetic processes such as pre-
concentration methods (e.g. field amplified sample stacking (see Bharadwaj & Santiago
2005) and isoelectric focusing (see Thormann, Mosher & Bier 1986)), multidimensional
assays (see Herr et al. 2003), and systems with poorly specified sample chemistry.
Electrokinetic instabilities can be leveraged for rapid mixing or can cause undesirable
dispersion in sample injection, separation and stacking.

EHD flow instabilities in so-called ‘leaky-dielectric’ liquids (such as corn oil) with
electrical conductivity gradients and applied electric fields have been observed since
the 1960s (see Melcher & Taylor 1969). These instabilities are caused by a coupling
of electric fields and ionic conductivity gradients that results in an electric body force
(per unit volume) of the form ρe E = (εE · ∇σ )E, where ε, E and σ are the local
permittivity, electric field and ionic conductivity, respectively. In a seminal paper
on EHD instability, Hoburg & Melcher (1976) showed that applying electric fields
transverse to conductivity gradients in low-conductivity corn oil always results in
unstable flows. Baygents & Baldessari (1998) performed a linear stability analysis of
fields applied parallel to a linear conductivity gradient in high-conductivity electrolyte
solutions. Their work was an effort to explain electrically driven distortion of scalar
bands observed in isoelectric focusing experiments (see Rhodes, Snyder & Roberts
1989). Their analysis included the effects of ion diffusion and predicted conditionally
unstable flow at relatively high electric Rayleigh numbers.

There has been revived interest in electrokinetic instabilities owing to recent
anecdotal and qualitative descriptions of anomalous dispersion and unstable flow
in electrokinetic pre-concentration methods used to increase the limit of detection
of µTAS devices (see Shultz-Lockyear et al. 1999; Ramsey 2001; Dang et al.
2003). Oddy, Santiago & Mikkelsen (2001) observed electrokinetic instabilities in
microchannel structures and made use of these instabilities for rapid continuous
flow micromixing using a.c. fields. Lin et al. (2004) developed a modified ohmic
model set of governing equations which is applicable to the study of electrokinetic
instabilities with a symmetric binary electrolyte. In addition, Lin et al. presented
limited experimental data, stability analyses, and detailed (two-dimensional and three-
dimensional) numerical simulations for the temporal growth of disturbances that form
at the interface of two liquid streams. They analysed the case of an electric field applied
perpendicular to the conductivity gradient in a high-aspect-ratio microchannel. Storey
et al. (2005) presented a depth-averaged version of the Lin et al. governing equations
which compared well with the complete three-dimensional model for high-aspect-
ratio channels. Chen et al. (2005) presented preliminary experiments and detailed
stability analyses using depth-averaged linearized equations for the study of convective
instability in the T-shaped intersection of two microchannel flow streams. In those
experiments, Chen et al. visualized coherent wavelike disturbances that were convected
downstream with the electro-osmotic flow. Chen et al. also showed that the flow be-
came absolutely unstable at applied fields in excess of the critical applied field required
for onset of instability. The symmetric binary electrolyte models of Lin et al., Chen
et al. and Storey et al. were extended to multiple ionic species by Oddy & Santiago
(2005). The latter work shows that asymmetric ion mobilities can lead to significant
reduction of the critical applied field required for instability. The destabilization of
such systems is caused by the electromigration-driven transport of conductivity.

These EKI studies have focused on instabilities formed by applied fields
perpendicular to a single conductivity interface. We have shown that sinuous
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disturbances and coherent structures form on a layer of high-conductivity solution
sandwiched between two low-conductivity streams in a cross-shaped microchannel (see
Posner & Santiago 2004). This realistic cross-shape flow geometry is directly relevant
to electrokinetic injection studies, sample pre-concentration processes that make use
of conductivity gradients, and EK mixing schemes. Following the initial work on
cross-shaped channels presented by Posner & Santiago, Shin, Kang & Cho (2005)
used a.c. applied fields in an effort to further enhance mixing using EKI.

Previous EKI studies collectively provide a fundamental understanding of
electrokinetic instabilities, identify key controlling parameters, present predictive
simulations, and show preliminary experimental results. To date, there is no extensive
experimental study of the critical applied field conditions required for instability
(e.g. as a function of conductivity gradient and diffusion length scales), and there
are no studies of realistic two- and three-dimensional flow geometries which occur
in the intersections of isotropically etched microchannels. In the current work,
we present a parametric experimental study of convective EKI in a cross-shaped
microchannel using quantitative scalar imaging. We perform the experiments in an
electrokinetic focusing flow configuration which is similar to the primary step of a
pinched flow electrokinetic injection (or a three-inlet-channel mixing scheme), where
the centre sample stream and sheath flows have mismatched ionic conductivities. As
mentioned above, these conditions are relevant to on-chip electrokinetic practices with
conductivity gradients such as sample injection for field-amplified sample stacking (see
Ren & Li 2004; Bharadwaj & Santiago 2005), flow control and separations of
streams with indeterminate sample chemistry, low-Reynolds-number micromixing (see
Oddy et al. 2001), and flow at the intersection of multidimensional assays using
heterogeneous buffer streams (see Herr et al. 2003). We explore variations of applied
electric field and centre-to-sheath conductivity ratios that impose variations of the
electric Rayleigh number across four orders of magnitude. Through interpretation of
quantitative scalar imaging results, we show that the critical electric field required for
instability depends on both the centre-to-sheath conductivity ratio and the applied
field ratio that determines the width of the centre stream. We introduce scaling for
the charge density (in the bulk fluid outside the electric double layer) as a function of
the applied field, ionic conductivity ratio, and centre-stream width. We show that the
flow becomes unstable at a critical electric Rayleigh number (Rae,� = 205) for a wide
range of conductivity ratios (three orders of magnitude) and applied field ratios. Our
formulation of the Rayleigh-number scaling is presented below.

The paper is structured as follows. In § 2, we describe the flow field and physical
parameters in the system; in § 3, we derive a scaling relation for a modified local
electric Rayleigh number and provide a control volume analysis for determining the
local electric field and pressure gradients in the region of the chip where the instability
develops; in § 4, we present the experimental set-up, electrolyte chemistry, and the
methods used to record and reduce the scalar imaging data; in § 5, we introduce the
instantaneous scalar images and present quantitative results reduced from the scalar
images. We end § 5 with a comparison of trends and absolute values predicted by a
simple model and the experimental data.

2. Description of the flow
In this work, we study instabilities that develop in the primary step of a pinched

flow electrokinetic injection in a cross-shaped microchannel when the sample and
sheath streams have different ionic conductivities. Figure 1 shows the cross-shaped
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Figure 1. Schematic of (a) stable base state and (b) unstable flow in a cross-shaped micro-
channel. The channels have the characteristic D-shape cross-sections of isotropic etching with
half-width w, depth d and lengths Ln. Buffered aqueous solutions flow towards the channel
intersection from the north (top), south (bottom), and west (left) wells and flow away from the
intersection along the x-axis (streamwise direction) towards the east (right) well. The sheath
streams from the north and south wells have an ionic conductivity σS and the sample stream
from the west well has a conductivity σW . The sheath streams flow symmetrically from the north
and south wells forming two conductivity interfaces and confining the centre sample stream
to a minimum thickness of half-width, h. The ions and tracer dye in the centre sample stream
diffuse into the sheath streams with a diffusive penetration length δ. Applied electric fields
couple with conductivity gradients to generate charge density ρe in the bulk fluid. These net
charge regions result in electric body forces that can destabilize the flow. For the condition
shown here, sinuous perturbations with a nominal wavelength λ grow and convect downstream.

microchannel and base state flow. This schematic shows the region of interest that is
approximately 600 µm wide and 150 µm in the vertical dimension. This region of flow
instability formation and development is a small fraction of the active chip area. The
wells are shown at the ends of abbreviated channel lengths. The channels have the
characteristic D-shape cross-sections of isotropic etching with a half-width w, depth
d , and lengths Ln. Buffered aqueous solutions flow toward the channel intersection
from the north (top), south (bottom) and west (left) wells, and flow away from the
intersection along the x-axis (streamwise direction) towards the east (right) well. The
sheath streams flow symmetrically from the north and south wells confining the centre
sample stream in the channel intersection into a triangle-shaped ‘head’. Downstream
of the head, the centre stream is focused to a narrow half-width of h. We will call
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this point of minimum width of the centre stream the ‘throat’. In all cases, the centre
stream is dyed with an electrically neutral fluorescent tracer dye. The sheath streams
from the north and south wells both have an ionic conductivity σS , and the sample
stream from the west well has a conductivity σW . We define the conductivity ratio
as γ = σW/σS . In the east channel, the centre stream is sandwiched between sheath
streams forming a double conductivity interface. The ions and tracer dye molecules in
the centre stream diffuse into the sheath streams with a diffusive penetration length
that scales as δ =

√
Deff x/U , where Deff is the effective diffusivity, x is the downstream

location, and U is the streamwise advection velocity.
In general, the velocity in each channel depends on the local electric field En, the

electro-osmotic mobility (which depends on the ionic concentration and pH), and
both imposed and internally-generated pressure gradients. We apply potentials Vn at
end-channel wells and impose no pressure gradient so that pE = pS =pW = pN . In
§ 3.3, we develop a control volume model to describe the electric field and internally-
generated pressure gradient in each channel as a function of the applied potentials,
Vn, and electrolyte conductivities. Symmetry of the sheath flows about the x-axis is
maintained by the applied potentials in the north and south wells. The width of the
centre stream is controlled by the ratio of the west (sample) well to the north and
south (sheath) well potentials.

As we shall discuss, electrokinetic flows become unstable when the distortion
of the conductivity interfaces due to internally-generated electroviscous velocities
occurs more rapidly than the dispersion of this interface due to molecular diffusion.
Figure 1(b) shows an unstable electrokinetic flow. Applied electric fields couple with
conductivity gradients to generate charge density ρe in the bulk flow (outside the thin
electric double layer). For the condition shown here, sinuous perturbations, with a
nominal wavelength λ, grow and convect downstream.

3. Theory
In this section, we first develop scaling relations for a electric Rayleigh number

that accounts for the local scaling of charge density as a function of the maximum
conductivity gradients. We then apply a control volume approach to solve for the
electric field and internally generated pressure gradient in the east channel as a
function of the directly specified experimental parameters.

3.1. Scaling analysis

The governing equations for EKI in a symmetric binary electrolyte are adopted
from the modified ohmic model of Lin et al. (2004). Here, we briefly describe the
derivation of the governing set of equations. We start with the conservation equation
for mass (3.1), the conservation of momentum with an electric body force (3.2),
Poisson’s equation (3.5), and two convective diffusion equations for a dilute two-
species electrolyte. Using the definitions of the ionic conductivity and free charge
density (equations (3.6a) and (3.6b), respectively) the convective diffusion equations
are recast into conservation equations for ionic conductivity σ and free charge density
ρe (see equations 8 and 9 in Lin et al.). Scaling of these conservation equations results
in a smallness parameter �C0/C0, where C0 is the total concentration of the ions
and �C0 is the difference of concentration of anion and cation. As we shall discuss
in detail below, this concentration difference is proportional to the internal field
generated by net charge density. For flows where the internal field is generated by
the interaction of an applied electric field and a conductivity gradient, we show that
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�C0 scales as εE0(γ − 1)/Fδγ , where E0 is the local electric field, γ is the ionic
conductivity ratio, and δ is the length scale over which changes in conductivity occur.
Microscale electrokinetic flows often have small δ (approximately 1 to 10 µm in the
current flow), E0 of the order of 100 V cm−1, and C0 of 1mM or larger. For the flows
of interest here, (γ − 1)/γ is of order unity, εE0(γ − 1)/Fδγ is of the order of 10−5

and �C0/C0 is of the order of 10−6. This suggests we can invoke the electroneutrality
condition (C+ ≈ C−) in predictions of the species concentration field development.

In the limit of small �C0/C0, we can write two simplified formulations for
conservation of conductivity field (3.3) and the conservation of electromigration
current (3.4). The details of these derivations can be found in Lin et al. (2004) and
Chen et al. (2005). The non-dimensional modified ohmic model governing equations
are therefore given as,

∇ · v = 0, (3.1)

Re

(
∂v

∂t
+ v · ∇v

)
= −∇p + ∇2v − ρe E, (3.2)

∂σ

∂t
+ v · ∇σ =

1

Rae

∇2σ, (3.3)

∇ · (σ E) = 0, (3.4)

∇ · (εE) = ρe. (3.5)

The non-dimensionalized two-ion electrical conductivity and charge density are,
respectively, defined as,

σ ≡ F2(Λ+C+z2
+ + Λ−C−z2

−)

σ0

, (3.6a)

ρe ≡ F(C+z+ − C−z−)

εE0/w
, (3.6b)

where F is Faraday’s constant, z is the valance number, and Λ is mobility. The
relevant non-dimensional parameters are the Reynolds number,

Re ≡ ρ0Uevd

µ
, (3.7)

the electric Rayleigh number

Rae ≡ Uevw

Deff

, (3.8)

and the ratio of electroviscous velocity, Uev to electro-osmotic velocity,

Rv ≡ E0d

ζ
. (3.9)

Here, ρ0 is the electrolyte solution density, E0 is the local electric field, w is the channel
half-width, d is the channel depth, ζ is the zeta-potential, and Deff is the effective
molecular diffusion coefficient. For now, we have considered a straightforward scaling
of the momentum equation (3.2) and conductivity convective-diffusion equation (3.3)
in terms of the channel depth d and the channel half-width w, respectively. In the next
section, we will present an alternative scaling for a local value of electric Rayleigh
number based, in part, on a diffusion-layer length scale. The electro-osmotic wall
velocity is characterized in terms of the zeta-potential ζ and the local electric field
E0 (see Hunter 1981). The velocity used in the Reynolds- and Rayleigh-number
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scaling is the electroviscous velocity derived from the balance of viscous and electrical
body forces in the momentum equation (3.2), given as,

Uev =
ρeE0

µ/d2
. (3.10)

In this work, Re is of the order of 0.1. The Rayleigh number is the ratio of the
electroviscous and diffusive velocities. The charge density term ρe in (3.10) forms in
the bulk regions of the flow containing conductivity gradients, and couples with the
applied field to generate electrical body forces in the bulk liquid. In a seminal paper on
electrohydrodynamic instabilities of so-called ‘leaky-dielectrics’, Hoburg & Melcher
(1976) showed that the accumulation of free charge ρe in regions of conductivity
gradients and collinear applied fields is described by the conservation of the
electromigration current (3.4) and Gauss’s law (3.5). This coupling can be quantified as

ρe = −εE · ∇σ

σ
. (3.11)

We now briefly summarize formulations of electric Rayleigh numbers reported in
the literature and their applicability to electrokinetic instabilities. Table 1 shows four
formulations of critical electric Rayleigh number for studies of electrohydrodynamic
instabilities with interfaces between miscible liquids where ion diffusion is significant.
We compare these definitions to the current formulation of a local Rayleigh number
(see § 3.2). In the third column, we give a ratio of the local electric Rayleigh number
presented here (see equation (3.19)) to the Rayleigh number defined in each reference.
The last column lists the critical Rayleigh number corresponding to the onset of
instability extracted from each reference. Note that these critical values are generated
from various models (as discussed in § 1) and depend on conductivity ratio, γ and
model type (i.e. two- or three-dimensional or depth-averaged equations).

The main difference among Rayleigh numbers in the table is the scaling of electrovis-
cous velocity, Uev . The formulation of electroviscous velocity depends on the scaling of
charge density and the length scale that characterizes viscous stresses. The simplest for-
mulation is adopted by Hoburg & Melcher and Lin et al. where charge density scales
such that the internally generated electric field is of the order of the applied field, given
as ρe = εE/w. Baygents & Baldessari scaled charge density with a linear conductivity
gradient as εE�σ/(σw), where w is both the width of the channel and the length over
which conductivity gradients occur. Lin et al. showed that the critical electric Rayleigh
number required for onset of electrokinetic instability in microchannels varied from
103 to 105, depending on the value of the conductivity ratio. Lin et al. also showed
that, in shallow channels, the shallow depth dimension dominates viscous stresses and
significantly stabilizes the flow. Storey et al. and Oddy & Santiago considered these
stabilizing effects by scaling the viscous stresses with the thin channel depth, d . One
limitation of the Rayleigh-number formulations adopted by Lin et al., Storey et al. and
Oddy & Santiago is that, unlike that of Baygents & Baldessari, it does not account
for the dependence of charge density on the magnitudes of conductivity gradients.

Chen et al. used arguments similar to those presented by Baygents & Baldessari,
but also considered nonlinear scaling of the charge density with a formulation for
perturbed electric fields. Another contribution by Chen et al. was a scaling of the
charge density with a diffusion thickness, δ.

In the current work, our goal is to derive a scaling for charge density and
electroviscous velocity that accounts for the maximum local values of conductivity
gradients that occur in a cross-shaped channel. This flow is distinct from previous
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work, at least in that there are two conductivity interfaces and an additional length
scale, the half-width of the centre stream, h. This scaling for an electric Rayleigh
number based on local conductivity gradients is presented in the next section.

3.2. Local electric Rayleigh number scaling

In this section, we present a derivation of the relevant electric Rayleigh number that
describes the onset of EKI. In an effort to generalize the formulation to systems
with two- and three-dimensional conductivity gradients (as found in our flow), we
formulate Rae in terms of a local conductivity gradient. First, we non-dimensionalize
the conductivity convective-diffusion equation (3.3) and charge density equation
(3.11) with the following scales: E∗ = E/Ea , σ ∗ = (σ − σL)/�σ , and ∇∗ = ∇δ, where
�σ = σH − σL and the asterisk denotes a dimensionless variable with order unity.
Next, we define a local Rayleigh number for the flow, based on a local value of
diffusion thickness δ as

Rae,� ≡ Uevδ

Deff

. (3.12)

The non-dimensional charge density is then written as

ρe = −εEa

δ

�σ

σH

E∗ · ∇∗σ ∗

σ ∗ . (3.13)

Since we are interested in a Rayleigh formulation that characterizes the onset of
instability, we scale the conductivity gradient with the local value of the conductivity
field diffusion thickness, δ. This scaling of the convective-diffusion equation is distinct
from previous formulations which use the channel height w (see Hoburg & Melcher
1976; Baygents & Baldessari 1998; Lin et al. 2004; Oddy & Santiago 2005; Storey
et al. 2005). In comparison, Chen et al. scaled the charge density with the diffusion
length scale δ and scaled the advection and diffusion of conductivity gradients with
the channel half-height w (see table 1). This was appropriate to their flows as the
normalized diffusion thickness δ/2w was of order unity (which was also the case for
Baygents & Baldessari 1998). In our flow, the normalized diffusion thickness δ/2w can
be of order of 0.1 or less, and so we distinguish between the maximum characteristic
length scale over which conductivity gradients can occur, w, and the actual length
scale of these gradients, δ.

In the nearly parallel flow of the east channel, we can estimate diffusion thickness,
using a simple one-dimensional formulation for diffusion along the spanwise direction.
The time scale for this diffusion is the streamwise advective time scale x/ueo, so that

δ ∼
√

xDeff

ueo

, (3.14)

where x is the streamwise location (from the left-most edge of the channel intersection)
and ueo is approximately the cross-sectional-area-averaged electro-osmotic velocity in
the east channel. The electro-osmotic velocity is a function of the zeta-potential and
applied field through the Helmholtz–Smoluchowski equation,

ueo = −εζE0

µ
, (3.15)

where E0 the local field in the east channel.
Next, we explore the effects of the length scales h, w and δ on the maximum

conductivity gradient by analysing the quasi-one-dimensional spanwise diffusion of
the centre stream in the domain bounded by y = ±w. In the stable nearly-parallel flow,
we approximate the initial three-dimensional conductivity distribution of the centre
stream (at the throat) as a one-dimensional diffuse top-hat distribution in the spanwise
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Rae formulation Reference Rae,�/Rae Rae,c

4εE2w2

Dµ

�σ

σ0

Baygents & Baldessari
d2

4w2

1

γ
∇∗σ ∗|max† 1.4 × 104

εE2wd2

Dµδ

(γ − 1

γ + 1

)2

Chen et al.
δ

w

(γ + 1)2

γ (γ − 1)
∇∗σ ∗|max 10

εE2w2

Dµ
Lin et al.a

d2

w2

γ − 1

γ
∇∗σ ∗|max 1100‡,104–105‖, 1200¶

εE2d2

Dµ
Storey et al.b

γ − 1

γ
∇∗σ ∗|max 400

εE2d2

Dµ

γ − 1

γ
∇∗σ ∗|max Current 1 205

† We have translated the linear conductivity gradient �σ/σ0 to γ − 1.
‡ Three-dimensional calculation, from Storey et al. (2005).
‖ Two-dimensional calculation, Rae,c function of conductivity ratio varied from 10 to 1.5, from Lin
et al. (2004).
¶ Three-dimensional calculation conductivity ratio of 10 from Lin et al. (2004).

Table 1. Definitions of electric Rayleigh number used by various authors. The third column
is the ratio of the modified Rayleigh number presented in equation 3.19 and cited definition.
The final column is the critical Rayleigh number reported for each definition.a also used by
Storey et al. (2005),b also used by Oddy & Santiago (2005).

(y) direction. The conductivity distribution develops via spanwise diffusion over a time
x/ueo where x is the downstream location. The one-dimensional normalized spanwise
diffusion of a top hat with an initial half-width h in a bounded domain can be solved
exactly using a Green’s function approach (see Crank 1975) as

σ ∗(y; x) =
1

2

[
erf

(
h + y

2δ

)
+ erf

(
h − y

2δ

)

+

∞∑
n=2

[
erf

(
h + y − nw

2δ

)
+ erf

(
h + y + nw

2δ

)

+ erf

(
h − y + nw

2δ

)
+ erf

(
h − y − nw

2δ

)]]
, (3.16)

where the first two terms account for the diffuse top-hat profile and the sum term ac-
counts for reflections from the walls at y = ±w . The diffusion thickness increases with
downstream location, as described by equation (3.14). If we account for only the first
set of reflections (n= 2), approximate the location of the maximum conductivity gradi-
ent as y = ±h, neglect terms of the order exp(−(w/δ)2) and smaller, and normalize, we
obtain an approximate solution for the normalized maximum conductivity gradient,

∇∗σ ∗
∣∣∣∣
max

≈ dσ ∗

d(y/δ)

∣∣∣∣
max

≈ 1 − exp

(
−

(
h

δ

)2
)

− exp

(
−

(
w − h

δ

)2
)

. (3.17)

Details of this derivation are given in the Appendix. The analysis shows that the
magnitude of the maximum conductivity gradient in the channel scales as exponential
functions of the length ratios h/δ and (w − h)/δ. When the centre or sheath stream
widths are of the order of the spanwise diffusion thickness, the conductivity gradient
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is rapidly homogenized by diffusion. That is, the maximum conductivity gradient
is reduced for both h/δ � 1 (small centre stream width) and (w − h)/δ � 1 (small
sheath stream width). The non-dimensional charge density equation is

ρe = −εEa

δ

�σ

σH

E∗ · ∇∗σ ∗

σ ∗ = −εEa

δ

γ − 1

γ

E∗ · ∇∗σ ∗

σ ∗ (3.18a)

and scales as

ρe ∼ −εEa

δ

γ − 1

γ
∇∗σ ∗

∣∣∣∣
max

, (3.18b)

where the non-dimensional quantities are of order unity and γ = σH/σL. Combining
equations (3.10), (3.12) and (3.18b), the modified local electric Rayleigh number
becomes

Rae,� ≡ εE2
ad

2

Deff µ

γ − 1

γ
∇∗σ ∗

∣∣∣∣
max

≈ εE2
ad

2

Deff µ

γ − 1

γ

dσ ∗

d(y/δ)

∣∣∣∣
max

, (3.19)

where ∇∗σ ∗|max is defined by equation (3.17). This definition of local modified electric
Rayleigh number accounts for scaling of the charge density as a function of the
maximum conductivity gradients in our flow. The maximum conductivity gradients
are governed by the imposed conductivity ratio γ , the centre stream width h, and
the local diffusion thickness δ. Note that we approximate the length scale that
characterizes viscous stresses with the depth of the channel d (the width of our
channels is 2.5 times larger than their depth). We also approximate the length scale
that characterizes conductivity gradients with the diffusion thickness δ. This scaling
results in a local Rayleigh formulation that is only dependent on the diffusion
thickness δ and the channel half-width w through the local value of ∇∗σ ∗|max . In
§ 5.8 we will show that this local electric Rayleigh number formulation (3.19) well
describes trends of instability onset observed in our experiments.

3.3. Control volume analysis

In this section, we present a control volume analysis conserving fluid flow, electric
flux, and electric current. The analysis provides us with an estimate of the internally
generated pressure gradients in the system as a function of the applied potentials
and conductivity ratio. We are interested in the average electric field and pressure
gradient in the east channel where the instability grows and develops. We solve for
the east channel, pressure and potential gradients as a function of the independent
experimental parameters, namely the conductivity ratio γ , electric field ratio β , and
the nominal applied field Ea , as defined below. The control surface of interest is shown
in figure 1(a) as a dashed line. This surface is taken as bounding the bulk liquid in
the channel, but excludes the electric double layer near the walls. Wall shear stress at
such a ‘slip surface’ is balanced strictly by pressure gradients along the channel (see
Santiago 2001) and, to a lesser degree, body forces in the bulk.

Although the electric field, ionic conductivity, and zeta-potential near the
intersection are typically a dynamic function of the flow field, we will for now
assume these are uniform within each channel, with a discontinuity at the channel
intersection. This assumption is justified considering that the intersection and the
region of the east channel which contain strong conductivity gradients make up a
small portion of the total channel system. Note that, even in the stable base state
condition, the solutions are well mixed by diffusion and are homogeneous within
about 20 channel half-widths from the intersection, while our east channel length is
3200 channel half-widths long.
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We begin the control volume analysis by satisfying conservation of the electro-
migration current and volume flux. The integral forms of equations (3.1) and (3.4) are

Q =

∮
A

U · dA = 0, (3.20)

i =

∮
A

σ E · dA = 0, (3.21)

where i and Q are the net current and volume fluxes through the control surface.
Equations (3.20) and (3.21) assume negligible diffusive and advective current fluxes
and no net accumulation of charge, consistent with the ohmic model formulation.
The slip surface can be assumed to be electrically insulated and impenetrable (see
Santiago 2001), so that U · dn, E · dn = 0, where n is the wall normal. The flow rate
in each channel is a function of the local field and pressure gradient, given as

Qn = −
∫

A

(
εζEn

µ
+

1

f Re

2D2
h

µ

∂p

∂x n

)
dA, (3.22)

where Dh is the hydraulic diameter, f is the appropriate Fanning-type friction factor,
and Re is the Reynolds number, based upon the area-averaged velocity and the
hydraulic diameter. The product f Re is tabulated for a wide range of geometries
in Shah & London (1978). For the D-shaped microchannels used here, Shah &
London give a value of 15.767 for f Re. We define the nominal pressure gradient and
electric fields in each channel as,

En ≡ V0 − Vn

Ln

, (3.23)

∂p

∂x n
≡ p0 − pn

Ln

, (3.24)

where the subscript n may denote the east (E), north (N), west (W) and south (S)
wells, and (0) denotes the channel intersection. Consistent with the symmetry of
our flow about the x-axis, we set QN = QS. The conductivity in the east channel is
approximated as the volume flux average of the west, north and south channels, so
that σE/σS = (γQW +2QS)/QE. The local volume-averaged ionic conductivity and the
electro-osmotic slip velocity are coupled through a dependence of the zeta-potential
on the local ionic species concentration. The electro-osmotic mobility of glass is
generally considered to be a function of the electrolyte ion concentration and pH (see
Hunter 1981; Kirby & Hasselbrink 2004). In our experiments, we have uniform pH
and the dependence of the potential is modelled by a power-law equation of the form

ζ

ζ0

=

(
σ

σ0

)−m

, (3.25)

where m is a power law coefficient, and the subscript denotes a reference condition.
Values for varying from 0.15 to 0.5 have been suggested by various authors (see
Hunter 1981; Scales et al. 1992; Szymczyk et al. 1999). We will assume here a value
of 0.3 which is consistent with results of both Sadr et al. (2004) and Yao et al.
(2003). The zeta-potential of the north and south channels are equal, ζN = ζS and
the respective zeta-potentials in the west and east channels are a function of gamma
ζW = ζSγ

−m and ζE = ζS(σE/σS)
−m.

Equations (3.20)–(3.24) determine the pressure gradient and electric field in the east
channel as a function the conductivity ratio γ , the nominally applied field Ea , and
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electric field ratio β . The quantities Ea , β and γ are defined as

Ea ≡ VS − VE

LE + LS

, (3.26)

β ≡ (VW − VE)/(LW + LE)

Ea

, (3.27)

γ ≡ σW

σS

. (3.28)

The nominal applied field for the flow field is defined as the potential applied between
the south and east channel reservoirs divided by the appropriate channel lengths. This
definition is useful as the characteristic field is then a function of directly specified
experimental parameters. The electric field ratio β is a ratio of the west and south
nominal fields and controls the centre-to-sheath flow-rate ratio and the centre stream
half-width h, as will be shown in § 4.3.

An explicit analytical expression for the pressures and electrical potentials in the
system is difficult to obtain. The roots that satisfy both equations (3.20) and (3.21)
were obtained using an iterative Newton–Raphson method to determine the pressure
and potential at the intersection. The pressure p0 and electrical potential V0 at the
intersection were then substituted into equations (3.24) and (3.26) to determine the
pressure gradient ∂p/∂xE and electric field in the east channel EE. We impose no
external pressure differences (i.e, pE = pW =pS = pN), but electrokinetic flows with
heterogeneous electrolytes or zeta-potentials may generate internal pressure gradients
(see Burgi & Chien 1991; Devasenathipathy 2003; Ren & Li 2004; Bharadwaj &
Santiago 2005).

Figure 2 shows a contour map of the internally generated nominal pressure gradient
in the east channel as a function of the applied field Ea and the conductivity ratio
γ � 1, for the β =1 case. The (negative) pressure gradients are favourable and
generate flow in the direction of electro-osmotic flow. For γ values greater than unity,
the pressure gradient increases linearly with the applied field Ea with a slope weakly
dependent on γ . For a given electric field, the pressure gradient magnitude initially
increases exponentially with γ and then saturates to a maximum value at γ ≈ 20. For
further increases in γ , the pressure gradient magnitude slowly decreases. In all cases
of interest, the largest pressure gradients generate volume fluxes that are always less
than 4% of the total volume flux.

We found power law (and linear) curve fits to the electric field solutions using a
non-linear regression procedure. The electric field in the east channel as a function of
the nominally applied field Ea , the field ratio β and the conductivity ratio γ , can be
expressed as

EE(Ea, β, γ ) = a(β)Eaγ
n(β), (3.29a)

a(β) = 0.30β + 0.46, (3.29b)

n(β) = 0.39β6.6, (3.29c)

The field in the east channel is a linear function of the nominally applied field Ea

and a power-law function of the west-to-south field ratio β and the conductivity ratio
γ . We plot our experimental results as a function of the nominally applied field Ea

(which is a known function of the directly controlled experimental electrical potential
VS given in (3.23)). Equations (3.29a)–(3.29c) can be used to determine approximately
the local value of the electric field in the east channel, where the instability develops.
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Figure 2. Contour map of internally generated pressure gradients (atm m−1) in the east
channel as a function of the applied field, Ea , and centre-to-sheath conductivity ratio γ and
field ratio β =1. The (negative) pressure gradients are favourable and generate flow in the
direction of electro-osmotic flow. In all cases of interest here, the largest pressure gradients
generate volume fluxes that are less than 4% of the total volume flux.

4. Exprimental methodology
In this section, we describe our epifluorescence microscopy imaging system,

electronics, electrolyte chemistry, and the methods used to record and reduce the
scalar imaging data.

4.1. Imaging and electronics

We obtained instantaneous concentration fields of rhodamine B using epifluorescence
microscopy and CCD camera imaging. Figure 3 shows the experimental set-up.
Experiments were performed in cross-shaped, isotropically etched (D-shaped) glass
channels 50 µm wide and 20 µm deep (Micralyne, Alberta, Canada). The channel
lengths are 85, 5, 4 and 5 mm for the north, east, south and west channels, respectively.
Electrical potentials were applied using platinum electrodes to electrolyte solutions
in 50 µL channel reservoirs fabricated from HPLC fittings (Upchurch, Oak Harbor,
WA, USA). The potentials were applied and synchronized to CCD image acquisitions
using a high-voltage sequencer (LabSmith, Livermore, CA, USA). The high-voltage
sequencer is limited to 3 kV potentials. A four-channel high-voltage power supply
(Micralyne, Alberta, Canada) was used for experiments requiring higher applied
potentials. A microscope (Nikon, Japan) with a 20×, NA = 0.45 ELWD objective
(Nikon, Japan), mercury bulb illumination, and epifluorescence filter cube (excitation
at 540 nm, emission at 625 nm; Chroma, Rockingham, VT, USA) were used to image
the flow. Images were recorded on a Peltier-cooled, 16-bit CCD camera with on-
chip gain (Photometrics, Tucson, AZ, USA). The exposure time of each image was
controlled by a liquid-crystal video-rate shutter (Displaytech, Longmont, CO, USA).
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Figure 3. Experimental set-up of epifluorescence microscopy for imaging fluorescent dye
concentration in electrokinetic flows. System components are the following: a, glass microchip;
b, objective; c, epifluorescence filter cube; d , mercury bulb; e, liquid crystal video shutter;
f , charged couple device camera; g, digital delay; h, liquid-crystal driver; i, high-voltage
sequencer; and j , computer.

We correct each image of scalar concentration for systematic errors with the
equation

Cj (x, y) =
Ij (x, y)raw − I (x, y)dark

I (x, y)flat − I (x, y)dark

, (4.1)

where,

I (x, y) =

n∑
j=1

Ij (x, y)

n − 1
. (4.2)

The instantaneous image index is j and the subscripts raw, flat and dark denote
the raw, flat-field and dark-field images, respectively. The flat-field images are
recorded with the channels filled with a uniform concentration of dye and correct for
illumination non-uniformity and detector response. The dark-field images are recorded
with the channels filled with buffer. The dark-field images correct for external light
scattered off channel walls and not chromatically filtered fluorescence of wall adsorbed
dye, and sensor dark-noise. We record two hundred dark and flat-field images before
each experiment.

Depth averaging along the optical axis (z-direction) is an artefact of fluorescence
imaging. Contributions to the measured fluorescence are made across the imaging
depth of field. Although depth-of-field definitions for microscopic imaging vary,
Inoué & Spring (1997) define the geometric and diffraction contributions to the depth
of field as

δz =
nλc

NA
+

ne

MNA
, (4.3)

where n is the index of refraction of the immersion medium, λc is the collection
wavelength, NA is the objective numerical aperture, M is the objective magnification,
and e is the smallest resolvable distance of the detector. Using this definition, the depth
of field for a 20×, NA = 0.45 objective is δz = 4.4 µm. This depth cannot be strictly
interpreted as the region over which the fluorescence is measured, but it suggests that
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Symbol Description Value

ε0 Universal permittivity 8.85 × 10−12 C V−1 m−1

εr Relative permittivity 78.3
µ Dynamic viscosity 1.0 × 10−3 kg m−1 s−1

ρ Density of water 1.0 ×103 kg m−3

Deff Effective diffusivity (KCl) 2.0 × 10−9 m2 s−1

Λ Mobility 8.2 × 10−13 mol s kg−1

F Faraday’s constant 9.65 × 104 C mol−1

ζ0 Reference zeta-potential −1.0 × 10−2 V
w Channel half-width 2.5 × 10−5 m
d Channel depth 2.0 × 10−5 m

Table 2. Electrolyte solution and microchip experimental parameters and fundamental
scales. The effective diffusivity of potassium chloride (KCl) is calculated using equations
from Probstein (1994) and tabulated values from Lide (1997).

the recorded images do not strictly represent a thin slice of the 20 µm deep channel.
Collected image intensities are therefore a superposition of dye emission from an
approximately in-focus, 4 µm thick region and fluorescence emission from dye above
and below the focal plane. In all experiments, we set the focal plane at about 10 µm
from the channel top wall. Note that confocal microscopy cannot be used to obtain
depth-resolved scalar measurements in these experiments owing to the rapid dynamics
of the instability.

4.2. Electrolyte solutions

The stock aqueous buffered solutions consisted of 10 mm HEPES hemisodium salt
(Sigma Aldrich, St Louis, MO, USA) in filtered deionized water (Fisher Scientific
W2-20, Fairlawn, NJ, USA). The pH of the buffered solutions were 7.5 as measured
using a pH meter (Corning, Corning, NY, USA). Potassium chloride (Sigma Aldrich,
St Louis, MO, USA) was added to the stock solutions to obtain desired conductivities.
We filtered the electrolyte solutions prior to the experiments with 200 nm syringe
filters (Nalgene Labware, Rochester, NY, USA). The conductivity of the west well
solution σW was measured as 40 mS cm−1 and 0.40 mS cm−1, respectively for the γ > 1
and γ < 1 experiments using a conductivity meter (CON Oakton Instruments, Vernon,
IL, USA). The north and south well solution conductivities σS were in all cases
identical and varied from 0.4 mS cm−1 to 40 mS cm−1. The conductivity ratio γ was
varied from 0.01 to 100. Other properties of the working liquids are shown in table 2.

To visualize fluid motion, 10 µm of electrically neutral, rhodamine B dye (Acros
Organics, Geel, Belgium) was added to the west well solution. To improve the
clarity of the visualizations shown in figure 4 (and for these visualizations alone), we
used 10 mm, high molecular weight (70 kDa), dextran conjugated rhodamine B dye
(Molecular Probes, Eugene, OR, USA).

4.3. Experimental conditions

In our parametric investigation, we recorded data for fifteen values of γ , eleven values
of β , and applied fields Ea spanning three decades from 0 to 3000 V cm−1. The range
of applied field, imaging frame rate, image size, and number of images recorded in
each experiment, varied depending on the purpose of the data. For the experiments
used to determine the critical electric fields, we slowly varied the applied field Ea

(defined in equation (3.26)) from an initial low field, corresponding to a stable base
state, to a field 333 V cm−1 greater than the initial field in 100 increments spaced by
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Figure 4. Representative instantaneous scalar concentration field, Cj (x, y), images of unstable
electrokinetic flow in 50 µm cross-shaped microchannel for centre-to-sheath conductivity ratios
γ > 1 (high conductivity in centre stream). Images correspond to centre-to-sheath conductivity
ratio of γ =100, applied field ratio of β = 1.13, and nominal fields Ea noted above each image.
The dyed centre stream flows from the west (left) channel and background electrolyte sheath
streams flow from the north (top) and south (bottom) channels forming two conductivity
interfaces and pinched ‘throat’ at the intersection. The north and south channels define the
intersection that starts at x/w = 0 and ends at x/w = 2. For stable flow regimes (a), the
nominal width of the dyed centre stream downstream of the triangle-shaped ‘head’ is a
function of β and γ as well as electrolyte chemistry. (b) For applied electric fields above a
critical value, a sinuous pattern in the dye develops and grows as it advects downstream.
(c) At Ea = 381V cm−1, disturbances grow rapidly as they convect downstream and roll up
into alternating flow structures. At still higher electric fields (d , e, f and g), the source of
the disturbances moves upstream and approaches the origin of the conductivity interface at
x/w = 0. At high fields, the upstream head structure of the injection stream oscillates in the
spanwise direction and modulates the downstream flow. The qualitative nature of the instability
does not vary with γ , but the applied field required to reach each flow regime depends on this
value and the applied field ratio β .
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Exp. γ β Ea (V cm−1) �Ea (V cm−1)

1† 0.01 0.90 0–3000 56
2† 0.02 0.90 300–3000 56
3† 0.05 0.90 300–3000 56
4† 0.10 0.90 300–3000 56
5† 0.15 0.90 300–3000 56
6† 0.20 0.90 300–3000 56
7† 0.33 0.90 300–3000 56
8† 1.0 1.26 300–3000 56
9† 3.0 1.26 300–3000 56

10 5.0 1.26 444–777 3.33
11 6.0 1.26 444–777 3.33
12 8.0 0.84 333–666 3.33
13 8.0 0.90 333–666 3.33
14 8.0 0.99 333–666 3.33
15 8.0 1.01 333–666 3.33
16 8.0 1.08 333–666 3.33
17 8.0 1.13 333–666 3.33
18 8.0 1.20 333–666 3.33
19 8.0 1.26 333–666 3.33
20 8.0 1.33 333–666 3.33
21 8.0 1.40 333–666 3.33
22 8.0 1.58 333–666 3.33
23 10 1.25 278–611 3.33
24 20 1.25 278–611 3.33
25 50 0.90 278–611 3.33
26 50 1.13 278–611 3.33
27 50 1.35 278–611 3.33
28 50 1.58 278–611 3.33
29 100 0.84 278–611 3.33
30 100 0.90 278–611 3.33
31 100 0.96 278–611 3.33
32 100 1.01 278–611 3.33
33 100 1.08 278–611 3.33
34 100 1.14 278–611 3.33
35 100 1.20 278–611 3.33
36 100 1.26 278–611 3.33
37 100 1.33 278–611 3.33
38 100 1.40 278–611 3.33
39 100 1.58 278–611 3.33
40 100 1.26 333–1122 11.11
41‡ 100 1.26 333–1122 11.11

† Manual HVS. Not all fields tested in range.
‡ Image size: 3 × 512, 2000 images recorded at 390 frames per second. Recorded four data sets at
this condition.

Table 3. Experiments performed. All experiments were conducted with an automated
high-voltage sequencer (LabSmith, Livermore, CA, USA) unless otherwise noted. For each
case, 200 images were recorded with 100 × 500 pixel resolution at 115 frames per second,
unless otherwise noted. Seven of these experiments were repeated four or more times to ensure
reproducibility.

3.33 V cm−1. The initial field for each experiment varied because the critical applied
field for instability depends strongly on γ and β . In experiments used to determine
critical applied electric field, we recorded 200 images (100 × 512 pixels) at each
applied field at a rate of 115 frames per second. All images were recorded with a
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Variable Range

γ = σW/σS 0.01–100
β 0.7–1.5
Ea 0–3000 V cm−1

Table 4. Range of independent experimental parameters.

1ms exposure time. In other experiments, smaller regions of interest are used and
images are recorded at higher frame rates. A comprehensive list of the experiments
and conditions is show in table 3 and summarized in table 4. In addition to this
systematic variation, approximately seven of the experiments were realized four or
five times to ensure repeatability across realizations and chip systems.

Before each experiment, the chip microchannels were flushed with a 10 mm solution
of sodium hydroxide (NaOH) for 30 min, then deionized water for 10 min, and then
background electrolyte for an additional 10 min. The buffer was then allowed to sit
in the channel for at least 30 min before each experiment. In this paper, we present
data from experiments performed on a single glass chip over the course of twenty
weeks. In all cases, the flow required a fraction of a second to become statistically
stationary after a change in applied voltage. Image acquisitions began 1 s after a
change in applied voltage. The elapsed time for each experiment was approximately
4.5 min. The electrical potential applied at each of the four wells was recorded for all
experiments. We filled each reservoir with an equal volume of solution in an effort
to initiate each experiment with negligible pressure gradient. As a check, before each
experiment, we electrokinetically injected a plug of dye into the east channel, grounded
all channel reservoirs, and observed its development for 15 s (a nearly stationary peak
indicating negligible pressure gradient). We adjusted the liquid levels of the reservoirs
until the plug exhibited no bulk motion.

As discussed in § 5.8, the critical applied electric fields for γ < 1 (lower conductivity
in the centre stream) are much larger than those for γ > 1. These experiments
require larger applied potentials and are conducted with a manual power supply
(as denoted in table 3). For these experiments, increments in the applied field were
spaced by 56 V cm−1. The larger electrical potentials result in larger flow rates and
increased current density. These higher flow rates therefore limited experimental
run time owing to fouling of the channel intersection, entrainment of electrolysis
bubbles, and unbalancing of channel well heights. Increased current density also led
to electrochemical bleaching of the rhodamine B dye (see Jain, Sharma & Bhargava
2003). These effects make experiments time-consuming and expensive, and so we will
present only limited data for the γ < 1 case.

5. Results and discussion
In this section we describe the base state and the qualitative features of the unstable

flow fields. We present quantitative results reduced from the scalar images and show
how the critical applied field required for unstable flow depends on the conductivity
ratio, γ and the applied field ratio controlling centre stream width, β . We end the
section with a comparison of local electric Rayleigh number and experimental data
and a scalar spectral analysis.

5.1. Base state flow and centre stream width

We first present a characterization of the base state flow. Figure 4(a) shows the stable
flow scalar field for γ = 100, β = 1.13 and Ea = 300 V cm−1. The dyed centre stream
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flows from the west channel and sheath streams flow from the north and south
channels forming a pinched throat within the channel intersection. The north and
south channels define the intersection that starts at x/w = 0 and ends at x/w = 2 (see
figure 1b). For stable flow regimes, the nominal width of the dyed centre stream in the
east channel is a function of β and γ as well as electrolyte chemistry. The electrolyte
chemistry influences the stream width through the electro-osmotic mobilities of
the channels, as described by equation (3.25). We define the measured spanwise (y-
direction) half-width of the focused sample stream as the half-width at half-maximum
intensity at a downstream location of x/w ≈ 1.5. This definition of h is consistent
with the one-dimensional Green’s function solution model presented in § 3.2 where
the centre stream and sheath widths are larger than the diffusion thickness δ. Using
eleven values of β (experiments 29–39 in table 3) at γ =100 and Ea = 278 V cm−1,
we determined a least-squares linear fit of the centre stream width normalized by the
channel half-height as a function of the field ratio:

h

w
= 0.97β − 0.67, (5.1)

where w is the channel half-height. The linear fit results in a linear regression
coefficient of R2 = 0.94 . For γ =8 and Ea = 333 V cm−1 (experiments 12–22), the fit
of the centre stream width is

h

w
= 0.85β − 0.57, (5.2)

This linear fit results in R2 = 0.93. In § 5.8, we will use these expressions relating
field ratio β to constriction of the centre stream in order to scale charge density as
a function of the local maximum conductivity gradients. For a given value of the
field ratio β , the centre stream will be wider for γ < 1 than for γ > 1, as shown
in figure 5(a). This is due to the dependence of the electro-osmotic mobility on
concentration of ions in solution.

5.2. Unstable flow field

Next, we describe qualitative features of the onset of the instability. Images of
corrected scalar concentration for γ =100 and β = 1.13 recorded at seven applied
fields are shown in figure 4. When the applied electric field Ea exceeds a critical value,
a sinuous pattern in the dye develops and grows as it advects downstream, as shown
in figure 4(c) for Ea = 381 V cm−1. For electrical fields corresponding to marginally
unstable flow, Ea = 374 V cm−1, small disturbances are detected, but the disturbance
amplitude diminishes in size and strength as they convect downstream. With an
increase of less than 2% of the applied field, Ea = 381 V cm−1, the disturbances grow
exponentially as they convect downstream. Further downstream, the disturbances roll
up in alternating sequences, qualitatively similar in appearance to the well-known
Bénard–von Kármán vortex street (see Bénard 1908; von Kármán 1912), although in
our experiments the nonlinear flow dynamics and formation of coherent structures is
driven by electrical body forces and not inertia.

At fields in excess of the critical applied field, Ea = 397 V cm−1, the disturbances
grow rapidly, forming coherent structures that originate from near the pinched
throat at x/w ≈ 1.5, as shown in figure 4(d). The position of the thin centre
stream ‘tail’, downstream of the throat, periodically fluctuates along the vertical
(spanwise) direction and is shown above the x-axis of the channel in this instantaneous
image. The source of disturbances moves upstream of the throat to the triangular
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Figure 5. Representative instantaneous scalar concentration field, Cj (x, y), images of unstable
electrokinetic flow for γ < 1 (lower conductivity in centre stream). Images correspond to
centre-to-sheath conductivity ratio of γ = 0.2, an applied field ratio of β = 0.9, and the applied
fields, Ea , noted above each image. Although the value of β is smaller for this experiment then
for those shown for γ > 1 (figure 4), the nominal spanwise centre stream width is larger owing
to the relatively higher electro-osmotic mobility of the west channel solution. (b) For γ < 1,
dilational disturbances grow and convect downstream above a critical value of the electric field.
(c) The origin of the disturbances moves upstream to x/w = 6 as we increase the applied field.
(d) With a further increase in the applied field, disturbances are readily apparent at x/w = 3,
are irregularly spaced, and appear to contain multiple wavenumbers.

shaped head at Ea = 581 V cm−1. At this field, the head oscillates in the spanwise
direction modulating the downstream flow. At higher fields, Ea = 778 V cm−1, the
location of strong disturbances moves further upstream and we observe aperiodic
scalar structures and rapid dispersion in the channel. With further increase in the
field, Ea = 1111 V cm−1, the source of disturbances moves back to the origin of the
conductivity interface at x/w =0. At these applied fields, the throat is a thin filament
that rapidly and aperiodically oscillates along the spanwise direction. The dye appears
well mixed just downstream of the intersection, at this field. The images shown in
figure 4 are a representative sample of the flow patterns that develop for values of
γ > 1. The qualitative nature of the instability does not vary with γ , but the applied
field required to reach each flow regime depends on the conductivity ratio and applied
field ratio β , as will be discussed in § 5.8. The scalar structures and periodic shedding
events visualized in figure 4 show that this flow has a rich spectral signature. Both
the spatial and temporal spectral content of scalar fluctuations is discussed in § 5.9.

In the γ < 1 case (a centre sample stream with a lower conductivity than the sheath
streams), we observe spatially periodic dilational flow structures in the unstable flow
region, as shown in figure 5. Figure 5 shows representative instantaneous scalar images
for γ =0.2, β = 0.9, and four applied fields denoted in the figure. Figure 5(a) is the
stable base state with an applied field of Ea = 1222 V cm−1. Although the value of
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γ is smaller for this experiment than for those in figure 4, the nominal spanwise
centre stream width is larger. The larger centre stream width is due to the relatively
higher electro-osmotic mobility of the west channel (with respect to the north and
south channels), which is in contact with the low ion concentration sample stream
solution. For γ < 1, dilational disturbances grow and convect downstream when the
critical electric field is exceeded, Ea = 1444 V cm−1, as shown in figure 5(b). As we
increase the applied field to Ea = 1667 V cm−1, the source of disturbances moves
upstream to x/w = 6 as shown in figure 5(c). With a further increase in the applied
field to Ea = 1889 V cm−1, disturbances are readily apparent at x/w = 3, as shown
in figure 5(d). At this field, the disturbances are irregularly spaced and appear to
contain multiple wavenumbers. Note that, in figures 5(c) and 5(d), the head is slightly
asymmetric about the x-axis (bottom side larger than the top side) as the potential to
the south well was limited by the 6000 V maximum of our high-voltage power supply.

5.3. Statistical moments of scalar images

Next, we present average and perturbation dye concentration fields for γ > 1. The
first moment (mean concentration field) is calculated as,

C(x, y) =

n∑
j=1

Cj (x, y)

(n − 1)
, (5.3)

where n is the number of images. The averages are calculated over n= 200 images
and shown in figure 6. For the experimental conditions used in this paper, the speed
at which the disturbances convect downstream is too fast for the human eye to resolve
the flow structures. For this reason, the average scalar fields are comparable to what
we see through the microscope binoculars when running the experiments. The mean
field images shown in figure 6 correspond to the same conditions as for those shown in
figure 4. Below the critical applied field, Ea =300 V cm−1, the centre stream remains in
a thin filament and diffuses slowly in the spanwise direction. Above the critical applied
field, Ea = 381 V cm−1, the centre stream is dispersed by low-amplitude disturbances
and appears to be slightly widened in this average concentration image, as shown in
figure 6(c). At Ea =397 V cm−1, disturbances grow in amplitude, and their point of
origin moves to the throat at x/w ≈ 1.5. At this field, the envelope of high-intensity
concentration widens quickly and the centreline scalar value decreases exponen-
tially along the streamwise direction. At higher fields, the source of disturbances
moves further upstream and results in a highly dispersed scalar field, as shown in
figure 6(e–g).

Figure 7 shows mean square scalar perturbation fields for the γ = 100, β = 1.13
and the fields shown in figure 4. At each condition, the mean square perturbation is
defined as,

C ′(x, y)2 =

n∑
j=1

C ′
j (x, y)2

(n − 1)
, (5.4)

where the scalar perturbation is C ′
j = Cj (x, y) − C(x, y). Figure 7(a) shows the stable

base state perturbation field recorded at Ea = 300 V cm−1. Figure 7(b) shows the
marginally unstable flow in which two thin streamwise-oriented regions of disturbance
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Figure 6. Average scalar fields, C(x, y), for γ = 100, β = 1.13, and the applied fields noted
above each image (same conditions as the experiments of figure 4). For the experimental
conditions used in this paper, the speed at which imaged disturbances convect downstream
is too fast for the human eye to resolve flow structures (even with lower magnification
optics). For this reason, these average scalar fields are comparable to what we see through
our microscope binoculars when running experiments. (a) Below the critical applied field,
the centre stream remains in a thin filament and diffuses slowly in the spanwise direction.
(c) Above the critical applied field, the centre stream is dispersed by low-amplitude disturbances
and appears slightly widened in this average concentration image. (d–g) At higher fields, the
origin of the disturbances moves further upstream and strong fluctuations result in highly
dispersed scalar fields.

originate at the downstream position of x/w =5 and die out near x/w = 10. The
perturbations grow in strength and the location of strong perturbations moves
upstream, as the field increases (figure 7c–g). At Ea =397 V cm−1 (figure 7d), the
point of origin of the perturbations has moved back to the throat at x/w ≈ 1.5. The
spanwise growth of the perturbation envelope is approximately exponential until this
width is bounded by the channel walls as shown in figure 7(d). The spatial growth
rates of the perturbation fields will be discussed in § 5.6. For now, we will note that
perturbations are observed to be convective in nature and grow in space as Ĉe−K(x/w),
where the non-dimensional (channel half-height) growth rate is −K . As the applied
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Figure 7. Mean scalar perturbation fields C ′(x, y)2 for γ =100, β = 1.13, and the applied
fields given above each image (the conditions of the experiments are as in figure 4). The
contours are spaced by an interval �C ′(x, y)2 = 0.05 and the white regions have a value of
zero. (a) The stable base state has minimal perturbation values throughout the flow field.
(b) For a marginally unstable flow, two thin streamwise-oriented regions of disturbance
originate at the downstream position of x/w =5 and these die out near x/w = 10. (c, d) As the
field increases, perturbations grow in strength and their point of origin moves upstream. (f )
At Ea = 778V cm−1, the triangular-shaped head begins to oscillate strongly along the vertical
direction and the source of disturbances moves back towards the origin of the conductivity
gradient at x/w ≈ 0. (g) At Ea = 1111V cm−1, the region of strongly perturbed flow shortens
and the pertubation field is characterized by very strong fluctuations near the point x/w ≈ 0.
(e–g) At fields above 581V cm−1, the flow is strongly unstable and well mixed downstream of
x/w ≈ 5.

field increases further, the source of the perturbations moves upstream of the throat,
x/w < 1.5, to the region originally occupied by the triangle-shaped injection head,
as shown in figure 7(e–g). At Ea = 778 V cm−1 (figure 7f ), the injection head moves
periodically in the vertical direction and the location of strong perturbations moves
back towards the origin of the conductivity gradient at x/w ≈ 0. At Ea = 1111 V cm−1

(figure 7g), the region of strongly disturbed flow shortens and the scalar structure
is characterized by very strong fluctuations near the point x/w ≈ 0. At fields above
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Ea = 581 V cm−1 (figure 7e–g), the flow is highly unstable, and downstream of x/w =5,
the flow is well mixed.

5.4. Velocity fields

In this section, we present estimates of the convective velocity of structures in the
unstable flow regime of the flow. We infer the streamwise ensemble-average velocity
of the flow in the east channel by tracking the displacement of scalars. Note that the
bulk flow velocity in the east channel is difficult to quantify using bulk measurement
methods such as current monitoring (see Huang, Gordon & Zare 1988; Ren,
Escobedo & Li 2001; Devasenathipathy & Santiago 2005) as the flow has highly non-
uniform conductivity and electric fields, resulting in non-uniform unsteady electro-
osmotic velocities near the walls. Only optical flow structure (or seed particle) tracking
methods are possible. Velocity in microchannels has been measured using micron
resolution particle image velocimetry (µPIV) in pressure-driven flows (see Santiago
et al. 1998; Meinhart, Wereley & Santiago 1999; Cummings 2000) and electrokinetic
flows (see Devasenathipathy, Santiago & Takehara 2002). Velocity fields of elec-
trokinetic flows in microchannels have also been inferred from tracking the displace-
ment of lines of maximum concentration of photo-activated caged dyes (see Sinton &
Li 2003). Note that the tracking of charged species (as in the case of particles typically
used in PIV) is greatly complicated because such seeded species experience wildly fluc-
tuating non-uniform electrolyte chemistries as they move through the EKI flow field.

In this study, we use cross-covariance from two successive images, recorded 8.7 ms
apart, to determine the displacement of passive scalar patterns. Measuring velocity
using correlations of successive scalar images has been investigated in more standard
fluid flows (see Tokumaru & Dimotakis 1995; Koochesfahani, Cohn & McKinnon
2000). Our algorithm discretizes the image pairs into regularly spaced interrogation
regions similar to PIV algorithms (see Adrian 1991). The displacement in each
interrogation region is calculated from the ensemble average of cross-covariances. We
ensemble averaged the correlations of 50 image pairs to improve the signal-to-noise
ratio in determining the displacement peak (see Santiago et al. (1998) for a discussion
of ensemble averaging of cross-covariances). The displacement is determined with sub-
pixel displacement resolution by fitting a five-point Gaussian curve to the ensemble-
averaged correlation function. As this technique requires streamwise gradients in
scalar concentration, we are restricted to the quantification of velocities in unstable
flow conditions.

Figure 8 shows spanwise velocity profiles for γ = 100, β =1.13 and Ea =425 V cm−1

for four streamwise locations. The interrogation windows are 100 pixels wide and
6 pixels in height with a 50% window overlap. Several flow features are revealed
by the analysis. The velocity at the wall is non-zero owing to the electro-osmotic
slip velocity. At x/w = 2.5, the velocity profile is broad with a small inflection at
the spanwise midline, y/w =0. The local minimum at the centre of the profile is
caused by the lower velocity of the high-conductivity centre solution. Recall that
electro-osmotic mobility decreases with increasing ion density. Further downstream,
the velocity profile is less ‘plug like’ and develops a peak near the centre half of the
channel. Although our control volume analysis predicts favourable pressure gradients
in the east channel, this simple analysis does not account for a strongly pronounced
peak in the velocity profile. This profile shape is most probably due to the effects of
counter-rotating flow structures observed in this strongly unstable flow field. See for
example, at Ea =397 V cm−1 in figure 4(d), where strong coherent flow structures are
alternately shed in a periodic deterministic fashion.
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Figure 8. Spanwise velocity profiles for γ = 100, β = 1.13, Ea =425V cm−1, and four
downstream locations �, x/w = 2.5; �, 3; �, 3.5; �, 4. The streamwise ensemble average
velocity of the flow in the east channel is estimated by tracking the displacement of scalars
using cross-covariances of successive image pairs. The velocity at the wall is non-zero owing
to the electro-osmotic slip velocity. At x/w = 2.5, the velocity profile is broad with a small
inflection at the spanwise midline y/w = 0. The inflection is probably due to the reduced
electro-osmotic mobility associated with the high-conductivity centre stream which contacts
the top and bottom surfaces of the microchannel (at z/d = 0 and 1). Further downstream,
the velocity profile is less ‘plug like’ and develops a peak near the centre half of the channel.
Spanwise integration of velocity profiles provides a measure of the volume flux through the
microchannel. The volume flux calculated from each velocity profile is within 8% of the mean
value of all profiles.

Spanwise integration of velocity profiles provides a measure of the volume
flux through the microchannel. The estimated volume flux is uniform along the
streamwise direction as expected. The volume flux calculated from each velocity
profile is within 8% of the mean value of all profiles. From these fluxes, we can
determine the area averaged velocity as a function of the applied field. For γ = 100,
β = 1.13, and using velocity profiles at x/w =2.5, the area average velocity varies as
U = 4 × 10−6 × Ea ms−1 (Ea in units of V cm−1) (with an R2 value of 0.95).

5.5. Perturbation energy measurements

The origin, spatial distribution and amplitude of scalar perturbations depend on the
applied field and the conductivity ratio. Figure 9 shows maps of scalar perturbation
versus applied field and downstream location for four values of γ = 6, 8, 50, 100 and
β = 1.13. We construct these plots from spanwise averages (from y/w = − 1 to 1) of
scalar perturbation fields as measured from 200 instantaneous images and at each
of 100 applied electric fields. For each value of γ there is a critical applied field
‘rise’ at which the perturbation energy increases rapidly downstream of the throat
at x/w > 1.5. For example, at γ = 6 in figure 9(a), the perturbation energy grows
sharply at Ec ≈ 525 V cm−1 and plateaus to a ‘shelf’ with increasing applied field
and downstream location. For a small increase in the conductivity ratio to γ = 8,
the sharp increase in critical applied field moves down to Ec ≈ 425 V cm−1. At this
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Figure 9. Space-field maps of scalar perturbation energy 〈C ′2〉y as a function of
nominally applied field, Ea , and streamwise location, x/w. Measurements are shown
for β =1.13 and conductivity ratios of γ = 6, 8, 50 and 100. For each γ value, there
is a sharp increase in perturbation energy versus electric field profiles for regions
downstream of the throat (x/w ≈ 1.5). This sharp increase marks the critical electric
field for the onset of the instability. For relatively low γ (a, γ = 6; b, γ =8), the
perturbation energy plateaus to a shelf for regions above the critical applied field and
downstream of x/w ≈ 1.5. For higher γ (c, γ = 50; d , γ = 100), a wide ridge of large
perturbation energy develops at x/w ≈ 3 and a narrower ridge develops at x/w ≈ 0.9.
These two ridges are associated with the vertical oscillatory motion of the centre stream
throat and head structures, respectively (see figures 4d and 4e). At γ = 50 and 100, the pertur-
bation energy shelf in the supercritical-field regime decays downstream indicating that the
rapid upstream fluctuations of the flow have quickly dispersed the dye into a well-mixed state.

conductivity ratio, we begin also to clearly discern regions of increased energy for
supercritical applied fields. These regions appear as a wide ridge centred at x/w ≈ 3
and a thinner ridge at x/w ≈ 0.9. These broad and sharp ridges are associated with
the strong vertical oscillatory motion of the centre stream throat and head structures,
respectively (see figure 4e). The perturbations are especially strong at these upstream
locations owing to the existence of sharp gradients in dye tracer not yet dispersed
by molecular diffusion and electroviscous stirring. At γ = 50, the perturbation energy
shelf in the supercritical applied field region decays rapidly downstream of about
x/w =4, indicating that the rapid fluctuations of the upstream perturbation ridges
have dispersed the dye into a well-mixed state. At this value, the broad ridge is
substantially reduced in intensity compared to the sharp upstream ridge which has
grown in intensity. At the highest conductivity ratio that we tested, γ =100, the broad
downstream ridge disappears and only the sharp, upstream ridge remains. At this
highest value, the energy rapidly decays downstream of the throat for fields above
the critical value Ec ≈ 380 V cm−1. The latter behaviour of the perturbation energy
map at high γ and Ea is associated with rapid mixing within the intersection and a
well-mixed state just downstream of the intersection.
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Figure 10. (a) Spanwise-averaged scalar perturbation energy, 〈C ′2〉y , as a function of the
streamwise location for γ =100 and β = 1.13. The baseline of the perturbation energy
decreases from x/w = 0 to 2. This region directly maps to the flow region occupied by
the triangular-shaped injection head at stable conditions. For stable flows, the perturbation
energy remains at a constant value of 1.5 × 10−3 for x/w values larger than 2. The perturbation
energy grows exponentially in space for unstable flow. The straight portion of these log–linear
curves indicates an exponential growth in space. The slopes of the perturbation energy profiles
are the exponential growth rates −K for each field, and these are shown in (b). The growth
rate is near zero for subcritical electric fields. At a critical electric field of Ec ≈ 365V cm−1,
the growth rate exhibits a sharp increase and then saturates to a value of −K = 1.2.

Together, the perturbation surface plots of figure 9 capture the salient qualitative
features of the flow, including the existence of a strong critical applied field for each
γ ; the mixing effect of strong upstream perturbations at large electric field and γ ;
and the movement of the source of perturbations upstream for increasing field. In the
next sections, we will explore each of these effects more closely and compare these
experimental trends to the predictions of our simple scaling models.

5.6. Spatial growth rates

Linear perturbation theory predicts exponential growth of perturbations of the form
Ĉe−K(x/w) for convective electrokinetic instabilities (see Chen et al. 2005). Chen et al.
(2005) measured regions of exponential spatial growth for convective instability
in a high-aspect-ratio T-shaped microchannel. They analysed the distribution
of spanwise-averaged perturbation amplitude (scalar perturbation energy) with
increasing streamwise coordinate of their flow. We shall take a similar approach
here. This definition is consistent with the d/d(x/w) slope of the perturbation energy
surfaces shown in figure 9. Figure 10(a) shows curves of spanwise-averaged scalar
perturbation energies 〈C ′2〉y as a function the streamwise location x/w for applied
fields between 278 and 500 V cm−1. The baseline of the perturbation energy decreases
from x/w = 0 to 2 for fields below Ea =350 V cm−1. This decay for low fields directly
maps to the stable flow in the region occupied by the triangular-shaped injection
head. When the flow is stable, the perturbation energy remains at a constant value of
1.5 × 10−3 for x/w values larger than 2.
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The spatial exponential growth of perturbation energy is clearly apparent for electric
field values above 365 V cm−1. At these higher fields, the perturbation energy initially
follows the baseline decay, but then transitions into a rapidly increasing energy
associated with the onset of strong instability. The straight portion of the log–linear
curves of figure 10(a) indicate an exponential growth in space. For an increasing field,
the region of rapid exponential growth (and associated departure from the baseline)
moves further upstream as the source of disturbances moves upstream. In all cases, the
perturbation energy increases to a peak value and then decreases via a single decaying
exponential at higher x/w. The location of this peak moves upstream and increases
in intensity with increasing field. This peak in energy is indicative of the strength of
the disturbances, followed by the subsequent decay in perturbations in the scalar field
owing to strong stirring of the flow field. These regions of strong perturbations and
well-mixed fluid can be compared to the images shown in figures 4, 7 and 9.

Figure 10(b) shows the slope of least-squares linear fits to the perturbation energy
growth. The slope of the linear fit is the exponential growth rate −K . The growth rate is
near zero for subcritical electric fields. At the critical electric field of Ec ≈ 365 V cm−1,
the growth rate exhibits a sharp exponential increase with the applied field and then
saturates to a value of −K =1.2.

The perturbation intensity fields of figure 7 show that the origin of
disturbances moves upstream with increasing applied field. At Ea = 778 V cm−1, strong
perturbations are observed near the origin of the conductivity interface at x/w =0.
This trend is shown more clearly in figures 10(a) and 11. Figure 10(a) shows spanwise-
averaged scalar perturbation energy as a function of the streamwise coordinate. The
region of exponential growth of perturbation energy clearly moves upstream with
increasing field. The location of maximum perturbation is first evident at x/w ≈ 6
for electric fields near the critical value and quickly shifts upstream with increasing
field. Figure 11 shows the streamwise position x/w of maximum scalar perturbation
energy as a function of the applied field Ea for γ = 6, 8, 50, and 100. The maximum
perturbation location is approximately linear with the field at higher fields. For values
of γ = 6 and below, the region of strong perturbations never moves further upstream
than x/w ≈ 2.5. For larger γ values, the source of strong perturbations approaches
the origin of conductivity interfaces at x/w = 0. From these data, the location of large
perturbations appears to be invariant to γ for γ greater than about 50.

The shift of disturbances toward the origin of the conductivity interfaces suggests
that the magnitude of the local electroviscous velocity is equal to or larger than the
magnitude of the local advective velocity provided by electroosmosis (e.g. resulting in
the non-dimensional velocity scale Rv). This observed trend may provide insight to the
demarcation between convective and absolute instability in these flows. The concepts
of absolute and global instability are commonplace for convective stability models (see
for example Huerre & Monkewitz 1990), including convective electrokinetic flows (see
Chen et al. 2005). The onset of, or transition to, absolute instability is often difficult to
detect experimentally (see Huerre & Monkewitz 1990; O’Donnell, Chen & Lin 2001).

5.7. Dependence on electric field ratio

In this section, we explore the effect of the centre stream width on the stability of the
flow. The width of the centre stream is controlled in the experiments by the applied
field ratio β as described in § 4.3. Figure 12 shows contour maps of the area-averaged
scalar perturbation energy 〈C ′2〉xy as a function of the nominally applied field Ea

and electric field ratio β for γ = 8 and 100. Each contour map is rendered from
normalized image data at 11 values of β and 100 discrete applied fields Ea . Each of
these 1100 experiments provides 200 instantaneous images which are used to calculate
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Figure 11. Streamwise position of maximum scalar perturbation energy plotted as a function
of applied field Ea for �, γ = 6; �, 8; �, 50; �, 100. The location of maximum perturbation
originates at x/w ≈ 6 for electric fields near the critical value and quickly shifts upstream with
increasing field. The maximum perturbation location versus field relation becomes linear at
higher fields. For γ values of 6 and below, the location of the region of strong perturbations
asymptotes to about x/w ≈ 2.5. For larger γ , strong perturbations tend towards the origin
of conductivity interfaces at x/w = 0. In our flow field, the growth of disturbances near the
origin of the conductivity interfaces suggests that the local electroviscous velocity produced by
electric body forces in the flow exceeds the local magnitude of advective velocity provided by
electroosmosis, resulting in absolute instability.

the perturbation fields. Each point in the maps of figure 12, is generated from the
area-averaged perturbation over a region of 50 × 512 pixels circumscribed by y = −1
to 1 and x/w = 0 to 15.

At each field ratio, the area-averaged scalar perturbation energy increases
dramatically at a critical applied field. The perturbations are strongest and the
critical applied fields are lowest for β values of about 1.25 for both γ values. We
attribute this behaviour to the magnitude of conductivity gradients (and associated
electric charge density) as a function of the centre stream width. Note that centre
stream width depends solely on β for a given conductivity ratio. At a β of 1.25,
the centre stream width is nearly equal to the sheath stream widths (i.e. centre
stream takes up approximately one third of the channel) which is apparent from
equations (5.1) and (5.2). Larger β values denote wide centre streams with thin sheath
flows whose gradients are quickly dispersed by molecular diffusion. Smaller β values
are associated with overly narrow centre streams whose conductivity gradients are also
quickly dispersed by diffusion. The significance of the conductivity ratio γ and the
electric field ratio β on the onset of flow instability are discussed in the next section.

5.8. Critical conditions for onset of flow instability

We determined the critical applied field required for instability for each conductivity
ratio by slowly ramping the applied field Ea from an initial low value (corresponding
to the stable base state) and then analysing fluctuations of scalar intensity as a
function of the applied field. In these experiments, we define the critical electric field
Ec as the applied field Ea that results in an area-averaged scalar perturbation energy
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Figure 12. Contour maps of 〈C ′2〉xy plotted as a function of the nominally applied electric
field, Ea , and west-to-south applied field ratio, β , for (a) γ = 100 and (b) γ = 8. Each contour
map is rendered from normalized image data at 11 values of β and 100 discrete applied
fields, Ea . The contours are spaced by an interval of �〈C ′2〉xy =0.001 and the white regions
have a value of zero. For a given conductivity ratio, β independently controls the width
of the centre stream, h. At each field ratio, the area-averaged scalar perturbation energy
increases dramatically at a critical applied field. The contour defining the onset of instability
(〈C ′2〉xy = 0.002) is shown as a bold solid line. The critical applied field is lowest for β values
of about 1.25 for both γ values. For (a) γ = 100, the critical applied field is nearly constant
for β values between about 0.95 and 1.5. We account for the effects of electric body forces,
viscous forces and the effects of molecular diffusion using a local electric Rayleigh number
scaling. Contours of the critical local electric Rayleigh number (equation (3.19)) Rae,� =205
are plotted as bold dashed lines.

〈C ′2〉xy that is twice that of the stable (base) state. Examples of this critical electric
field determination are shown in the inset of figure 13. The inset shows a plot of
area-averaged scalar perturbation energy as a function of the applied field. For all γ

values, the scalar perturbation undergoes a dramatically sharp increase at the critical
applied field value. For γ = 100, the perturbation intensity doubles from the base
value of 0.001 to 0.002 at an applied field of Ea =365 V cm−1. A doubling of the per-
turbation magnitude occurs within a field increment of just 5.5 V cm−1. The critical
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Figure 13. Critical applied electric field, Ec , plotted as a function of the centre-to-sheath
conductivity ratio for γ > 1 and β = 1.13. The inset shows the area-averaged scalar perturbation
energy as a function of the applied field for γ = 6, 10, 50 and 100. The critical applied field is
defined as the Ea value at which perturbation energy increases to twice the stable base state
value. The main plot shows the critical applied field required for onset of instability as a function
of the conductivity ratio. The critical applied field asymptotes to about Ec = 365V cm−1 at
large conductivity ratios and increases rapidly for decreasing γ near γ = 1. The trend of
critical applied field with γ is captured by our scaling analysis of local electric Rayleigh
number. The critical applied field required for the onset of instability, equation (5.5), is plotted
for Rae,� crit = 205 as a solid line.

applied field value increases with decreasing conductivity ratio for β = 1.13. The main
plot of figure 13 shows a summary of the critical electric fields as a function of the
conductivity ratio. The critical applied field asymptotes to about Ec =365 V cm−1 at
large conductivity ratios, and increases rapidly for decreasing γ near γ = 1.

The trend of critical applied field with increasing γ is captured by the scaling
analysis presented earlier. Our electrokinetic flow field is expected to become unstable
at a critical local electric Rayleigh number (see Lin et al. 2004; Chen et al. 2005).
From our relation for a modified local electric Rayleigh number, equation (3.19), we
can solve for the critical value of the applied field as a function of a critical Rayleigh
number and conductivity ratio γ as follows:

Ec =

√
Rae,� crit

∇∗σ ∗
∣∣
max

Dµ

εd2

γ

γ − 1
. (5.5)

Although the centre-stream width varies with γ for a given β , we approximate the
value of ∇∗σ ∗|max as unity for β = 1.13 using equations (5.1) and (5.2). This is a
reasonable assumption since the value of ∇∗σ ∗|max is near unity for a wide range
of h values (see the derivation and evaluation of ∇∗σ ∗|max in the Appendix). Values
of other parameters used in equation (5.5) are given in table 2. This scaling of the
critical electric field for Rae,� crit =205 is plotted against the experimental data as
a solid curve in figure 13. There is good qualitative agreement between the trends
predicted by this simple first-order scaling relation and the quantitative experimental
data for a modified electric Rayleigh number of 205.
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Figure 14. Critical applied electric field, Ec , plotted as a function of the centre-to-sheath
conductivity ratio for γ < 1 and β = 0.9. The critical applied fields are much larger than those
for γ > 1. There is a local minimum for the critical applied field at γ ≈ 0.15. The critical
applied field increases rapidly as γ approaches both 0 and 1.0.

Previous EKI studies have also presented scaling analyses and predictions for the
critical applied electric field as a function of the conductivity ratio γ . Chen et al.
(2005) developed scaling for the Rayleigh number as a function of the conductivity
gradient, as discussed in § 3.2. This scaling results in a critical applied field dependence
of the form [(γ + 1)/(γ − 1)]2 which also agrees well with our experimental data.
The dependence of the critical electric field on the normalized conductivity gradient
is different from that predicted by the scaling of Baygents & Baldessari (1998). The
latter scaling predicted an inflection point in the field versus gradient curve, with the
critical field rising for both the low- and high-conductivity gradient limits.

Using a similar experimental procedure, we have identified the critical electric field
for the γ < 1 experiments (experiments 1 to 7 in table 3). The critical applied fields
for γ < 1 are shown in figure 14. For this range of the conductivity ratio, the critical
electric field is much larger in magnitude than the γ > 1 case. Unexpectedly, we see
a local minimum for the critical applied field at γ ≈ 0.15. For this range of γ , there
appears to exist two large (perhaps asymptotic) values for the electric field at γ

values of 0 and 1.0. Our first-order scaling relations do not account for this variation
of the critical applied field in the domain of γ < 1 and may be the focus of future
investigations. One possible cause for this behaviour is the two-dimensional nature
of base state electric fields. For the γ < 1 case (where the centre stream conductivity
is low and centre stream electro-osmotic mobility is high), electric fields are expected
to emerge from the centre stream and quickly flow into the sheath streams within a
few channel widths of x/w =0. This crossing of electric field lines from low to high
conductivity regions may have a stabilizing effect on the flow field not present in the
γ > 1 case. Unsteady, three-dimensional simulations of the flow in this region may
shed light on the critical applied field versus γ behaviour in these flows.

We again turn back to the more in-depth analysed γ > 1 case. Figure 15 shows
the spatial growth rates for γ = 6, 8, 20 and 100 where the abscissa is normalized
by the critical electric field for each conductivity ratio. The spatial growth rates are
shown to collapse when scaled by the critical electric field. This collapse demonstrates
that our definition of the critical applied field is equivalent to the field at which the



Convective electrokinetic instability 33

(Ea – Ec)/Ec γ =100

–K

–0.2 –0.1 0 0.1 0.2

0

0.5

1.0

Figure 15. Perturbation growth rate slopes −K plotted as a function of the normalized
applied field for �, γ = 6; �, 8; �, 50; �, 100. The growth rates collapse for an applied field
normalization of the form (Ea −Ec)/Ec,γ = 100. This collapse demonstrates that our definition of
the critical applied field is consistent with the field at which the instability exhibits a non-zero
growth rate.

instability exhibits a non-zero growth rate. This definition is consistent with the linear
convective stability analysis of fluid flows.

The data presented in figure 12 give insight into the critical applied field as a
function of the applied field ratio β . The contour of 〈C ′2〉xy = 0.002 (shown as a bold
solid line in figure 12) defines the critical applied field as a function of β . This critical
applied field definition is consistent with our aforementioned definition of a doubling
of the base state perturbation energy. In figure 12(a) the contour is nearly vertical
for values roughly between 1.5 and 0.9, showing that the critical field is a weak
function of β in this range. Outside of this range, the critical field increases rapidly
and is a strong function of β (note the nearly horizontal regions of this contour).
This dependence of the critical applied field on β can be related to the characteristic
diffusion thicknesses over which strong conductivity gradients occur. When the centre
or the sheath stream widths are of the order of the spanwise diffusion thickness, the
conductivity gradient is rapidly homogenized by diffusion. These conditions result in
a reduction in the maximum conductivity gradient for the cases of h/δ � 1 (small
centre stream width) and (w − h)/δ � 1 (small sheath stream width). We can predict
when these conditions are satisfied using equation (5.1), the experimentally measured
relationship between the centre stream width h and the applied field ratio, β . Although
the relationship between h and β describes the width of the fluorescent scalar dye in
the centre stream, we can assume it approximately characterizes the initial upstream
width of the high-conductivity stream as well. The definition of h that we use in § 3
is relatively independent of the diffusion thickness for h/δ > 1. Additionally, in the
upstream region, the relation between h and β is dependent mostly on the conductivity
ratio γ and the channel electro-osmotic mobility. We estimate the diffusive length
scale δ with equation (3.14) as δ = 6 µm at a downstream location of x/w =1.5. This
estimate uses the effective diffusivity of KCl (see table 2), and an electro-osmotic
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velocity of 3 mm s−1 at Ea = 400 V cm−1. We choose the x/w = 1.5 location because
it is the approximate location of maximum perturbation intensity for critical applied
field conditions. For γ = 100, the conditions of thin centre stream (h/δ � 1) and thin
sheath streams ((w − h)/δ � 1) are satisfied for β � 1.47 and β � 0.94, respectively.
Figure 12(a) shows that the critical applied field required for instability does indeed
become a strong function of β and dramatically increases outside of the range
0.94 <β < 1.47.

Next, we can show that our scaling analyses provide a good prediction of the trends
observed for critical applied field value as a function of both β and γ . We first relate
β to the centre stream width h using equations (5.1) and (5.2). We then use the factor
∇∗σ ∗|max in equation (3.19) to estimate the value of the maximum conductivity field
gradient for a given centre width h, sheath width (w − h), and diffusion thickness δ.
Combining equations (5.1), (5.2) and (3.19), we can plot contours of Rae,� = 205 as
a function of the nominally applied field and field ratio. The results of the scaling
analysis prediction are shown as a bold dashed contour in figure 12. The simple first-
order scaling relation of modified electric Rayleigh numbers is shown to agree well
with the experimentally observed trends in the critical applied field as a function of
the applied field ratio β and γ . The maximum conductivity gradient function ∇∗σ ∗|max

forces the contour of constant Rayleigh number to bend towards higher applied fields
as the centre and sheath stream widths approach the diffusion thickness. In all cases,
the largest conductivity gradients are limited by the smallest diffusive length scale
allowed by each value of β . Overly thin centre streams (small β) and sheath streams
(larger β) are quickly dissipated by molecular diffusion.

As a whole, the scaling analyses show that the critical conditions for the onset of
flow instability are a result of the competing effects of electroviscous stretching and
folding of conductivity interfaces and the dissipative effect of molecular diffusion.
The electroviscous motion is a result of the balance between electrical body forces
and viscous forces in the bulk liquid. We further show that the net charge scales with
the maximum conductivity gradients which are a function of geometry, boundary
conditions and the effects of molecular diffusion.

5.9. Spectral analysis

We quantify the wavenumber energy distribution of the instability disturbances by
spatial energy spectra. The spectra are obtained from ensemble-averaged discrete fast
Fourier transforms of instantaneous scalar images. The spatial fluctuation transforms
are performed on intensity profiles that are vertical averages of a rectangle of 3 pixels
along the vertical direction and 500 long. These subregions are extracted from the
instantaneous images along the x-axis centreline (y/w = 0) from x/w =0 to 16.5. We
apply a Hanning window to reduce wavenumber leakage and normalize the spectra by
the area average scalar perturbation 〈C ′2〉xy . Figure 16 shows a contour map of spatial
energy spectra as a function of normalized wavenumber k =2w/λ and a range of
applied fields at γ = 100, β =1.26. Below the critical field, Ea < 365 V cm−1, there is a
single d.c. peak at low wavenumbers. This near-d.c. peak is due to the finite resolution
of this finite-duration Fourier transform and the effect of the Hanning window. At
the critical applied field of 365 V cm−1, a strong peak forms centred at k = 1 and a
weaker peak at k =2. The wavenumber of this dominant peak decreases with applied
field, showing that the wavelength of scalar structures increases with increasing
field. At much higher applied fields we see a continuous slowly decaying spectrum.

Figure 17 shows three sample spectra extracted from figure 16 at the applied
fields: Ea = 360, 388 and 888 V cm−1. At Ea = 360 V cm−1, the flow is stable and the
spectra shows a decrease from the d.c. peak value from k =0.1 to about 0.2. For
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Figure 16. A scalar spatial energy spectra intensity contour map plotted as a function of
dimensionless wavenumber, k =2w/λ and nominal applied field, Ea for γ = 100 and β = 1.26.

The contours are spaced by 0.5 and are defined as log (Ĉ(x)Ĉ(x)
∗
)/〈C ′2〉xy , where the overbar

denotes ensemble averaging over 200 spatial spectra. At low fields, energy is limited to near-zero
wave-numbers. At the critical applied field of 365V cm−1, a strong peak forms centred at k = 1
and a weaker harmonic at k = 1.9. The wavenumber of this dominant peak decreases with
applied field, showing that the wavelength of scalar structures increases with increasing field.
At applied fields above about 750V cm−1, we observe a continuous slowly decaying spectrum.
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Figure 17. Selected scalar spatial energy spectra plotted as a function of dimensionless wave
number, k = 2w/λ for γ = 100, β = 1.26, and three applied fields. At Ea = 360V cm−1 (——)
the flow is stable and there is sharp decrease in energy from d.c. Above the critical applied field,
Ea = 388V cm−1 (– – –), there is a strong peak at k = 1 and a weaker harmonic at k = 2. The
peak at k = 1 shows the dominant disturbance wavelength is nearly equal to the channel width.
At higher applied fields, Ea = 888V cm−1 (· · ·), we obtain an energy spectrum that cascades
continuously over three decades. The continuous spectral decay in energy is due to the effects
of electroviscous velocity fluctuations and molecular diffusion on the scalar field. Spectra are
separated in the vertical direction for improved clarity.
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Figure 18. Scalar temporal power spectra for γ = 100, β = 1.26, and measured at x/w = 3 and
y/w = 0 at the applied fields noted above each curve. The hat in the ordinant label denotes
a discrete Fourier transform and the asterisk denotes a complex conjugate. The spectra are
displaced in the vertical direction for improved clarity (although the same scale is used for
all of the traces). When the flow is stable there is only a broad d.c. peak near ν = 0 s−1.
For the marginally unstable flow, Ea = 378V cm−1, a single narrow peak forms at ν = 42 s−1

which is consistent with a nearly sinuous disturbance. At Ea = 389V cm−1, the fundamental
frequency shifts towards a higher frequency of ν = 42.25 s−1 and weaker harmonics form
at 88.5, 132.75 and 177 s−1. The shift to higher frequencies is consistent with a first-order
increase in the electro-osmotic velocity and a slowly varying spatial wavenumber. At higher
fields, Ea = 722V cm−1, we observe a bifurcation and period doubling. At Ea = 867V cm−1, we
observe a continuous energy spectra.

fields in excess of the critical value, Ea =388 V cm−1, there is a strong peak at k = 1
and a weaker harmonic at k = 2. These peaks show that the dominant disturbance
length scale is approximately equal to the channel width 2w. This is confirmed by a
visual inspection of the coherent structures in figure 4(c). At much higher fields of
Ea = 888 V cm−1, we obtain an energy spectrum that cascades continuously over three
decades. This spectra shows a near power-law behaviour for wavenumbers in the
range of k = 0.5 to 3. The decay is due to the dissipation of small-scale concentration
field fluctuations by electroviscous stirring and diffusive dissipation. Electric body
forces and electroviscous velocity fluctuations play a role analogous to inertia and
turbulent eddies in turbulent flow (see Batchelor 1959).

Lastly, we can also calculate temporal scalar power spectra from time records
generated from a set of extended image series (experiment 41 in table 3). The data
sets contain 2000 images that are 3 pixels in the vertical direction and 512 pixels long.
These data sets are recorded at 390 frames per second. We also performed additional
experiments at selected high field conditions with image frame rates of 25, 50, 115
and 250 frames per second and compared spectral and temporal content to verify
that data were not aliased. Time series records are composed of the area averaged
intensity of a 3 × 3 pixel region centred along the x-axis at y/w = 0. We again
apply a Hanning window to reduce frequency leakage. Figure 18 shows six temporal
spectra calculated at γ = 100, β =1.26, and six applied fields. At Ea = 356 V cm−1,
the flow is stable and there is only a d.c. peak near ν =0 s−1 (broadened by the
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finite resolution and the effect of the Hanning window). For a marginally unstable
flow at Ea =378 V cm−1, a single narrow peak forms at ν = 42 s−1. A single peak
is consistent with a nearly sinuous disturbance as visualized in figure 4(b). With a
small increase in the applied field to Ea =389 V cm−1, the fundamental frequency
shifts toward a higher value of ν = 44.25 s−1 and weaker harmonics form at 88.5,
132.75 and 177 s−1. The shift to higher frequencies is consistent with a first-order
increase in the electro-osmotic velocity and a spatial wavenumber weakly dependent
on the field in this region. At higher fields, the fundamental frequency peak and
associated harmonic frequencies shift to lower frequency values owing to a now
significantly decreasing spatial wavenumber. We observe a bifurcation and period
doubling at Ea = 722 V cm−1. At Ea =867 V cm−1, we observe a continuous energy
spectra consistent with the results showed for spatial energy spectra. Bifurcations,
period doubling, and continuous energy spectra are common to nonlinear chaotic
systems and we will further investigate these characteristics of the strong nonlinear
behaviour of EKI in a future publication.

6. Conclusions
Electrokinetic instabilities are generated by the formation of net electrical charge

in bulk liquid regions outside the electric double layer. This net charge is formed
in regions of the flow where the local conductivity gradient and electric field are
parallel. The total (internally generated plus external) electric field couples with
charge density to generate electrical body forces that are balanced by viscosity.
This force balance generates velocity fluctuations with a magnitude described by the
electrovicous velocity scale. Electrokinetic flows with conductivity gradients become
unstable when the destabilizing effects of electroviscous stretching and folding of
conductivity interfaces dominates over the dissipative effects of molecular diffusion.

We have presented a parametric experimental study of convective EKI in
isotropically etched cross-shaped microchannels using quantitative epifluorescence
imaging. We perform the experiments in a configuration that is similar to the primary
step of a pinched-flow electrokinetic injection where the centre stream and sheath
flows have mismatched ionic conductivities. We explore variations of applied d.c.
electric field, electric field ratio, and centre-to-sheath conductivity ratios, and these
impose variations of the electric Rayleigh number across four orders of magnitude.

We have shown that EKI in an electrokinetic focusing-type flow in a cross-
shaped channel intersection leads to coherent scalar structures in the outlet channel.
These structures are sinuous for γ > 1 (higher centre stream conductivity) and γ < 1
dilational for (smaller centre stream conductivity). When the applied field exceeds a
critical value, perturbations in the scalar field grow exponentially in space. The origin
of disturbances moves upstream with increasing field. For supercritical applied fields
and large conductivity ratios (γ � 8), disturbances grow rapidly from the origin of
the conductivity interfaces (x/w = 0). This behaviour suggests that the magnitude of
the local electroviscous velocity produced by electric body forces is of the same order
as the advective velocity provided by electroosmosis.

We use quantitative interpretation of experimental results to show that the critical
electric field required for instability depends on both the centre-to-sheath conductivity
ratio γ and the applied field ratio β which determines the width of the centre stream.
We show that the charge density (in the bulk fluid outside the electric double layer)
and the local Rayleigh number scale with the maximum conductivity gradients in
the flow. This conductivity gradient is a function of the conductivity ratio, the centre
stream width, and the diffusive length scale over which conductivity gradients occur.
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We introduce a modified local electric Rayleigh number and show that the flow
becomes unstable at a critical electric Rayleigh number (Rae,� = 205) for a wide range
of conductivity ratios γ (three orders of magnitude) and applied field ratios β . Future
work may include a detailed investigation of the explicit dependence of the electric
Rayleigh number on each of the pertinent length scales in the flow (including d , w, h

and δ), which requires a set of experiments where each of these scales can be varied
independently.

Finally, spatial energy spectra show that the dominant disturbance wavelengths are
commensurate and scale with the channel height (2w) for unstable flows near the
critical applied field. At higher fields, the spatial spectra cascade continuously over
a decade of wavenumbers. Temporal spectra show that the initial disturbances are
purely sinuous with a strong fundamental frequency. At higher applied fields, the
flow develops additional harmonics and there is clear evidence of bifurcation and
period doubling with increasing electric field. We are continuing to explore the rich
and dynamic behaviour of these electrokinetic flows.

This work was sponsored by an NSF PECASE Award (J.G.S., award number CTS-
0239080-001) with Dr Michael W. Plesniak as grant monitor. J.D.P. thanks Michael
H. Oddy, Rajiv Bharadwaj and Hao Lin for insightful discussions.

Appendix. Derivation of ∇∗σ ∗|max

The generalized equation for the spanwise diffusion of an initially top-hat scalar
profile of conductivity is given in equation (3.16). The conductivity gradient is given
by the first spatial derivative of equation (3.16), given as,
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, (A 1)

where we have approximated the expression with a truncation at n= 2 and normalized
by 2/

√
3. The first two terms account for gradients due to the diffuse top-hat

distribution, and the final four terms account for the first set of reflections at y = ±w.
Figure 19 shows profiles of normalized conductivity, σ ∗, and conductivity gradient,
∇∗σ ∗, for a diffusion thickness of δ/w = 0.1 and three different values of the normalized
centre stream width h/w = 0.1, 0.5 and 0.9. For h/w = 0.5, the top-hat profile spans
half of the total channel width and the maximum normalized conductivity gradient
is equal to unity. When the centre stream width is equal to, or smaller than, the
diffusive length scale (h/δ � 1), then the maximum conductivity ratio is decreased, as
shown for h/w = 0.1 in figure 19. Similarly, the maximum gradient is again reduced
when the sheath stream width is equal to or smaller than the diffusive length scale
((w − h)/δ � 1), as shown for h/w =0.9.

Next, we derive a compact analytical expression for maximum normalized
conductivity gradients that occur in one-dimensional diffusion along the spanwise
direction. The exact solution for the maximum conductivity gradients are obtained
by evaluating the untruncated form of equation (A 1) at the roots of the second
conductivity derivative d2σ ∗/d(y/δ)2. Since we are interested in a compact and
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Figure 19. Spanwise normalized conductivity σ ∗ (——) and conductivity gradient ∇∗σ ∗ (– – –)
for δ/w = 0.1 and h/w = 0.1, 0.5 and 0.9. For thin centre streams (h/w = 0.1), the maximum
conductivity value and gradients are reduced and the centre stream is nearly equal to the
diffusion thickness (h/δ = 1). For wide centre streams (h/w = 0.9), the sheath streams are
nearly equal to the diffusion thickness ((w−h)/δ =1) and the maximum conductivity gradients
are again reduced.
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Figure 20. Maximum normalized value of spanwise conductivity gradient plotted as a
function of the centre stream width h/w for δ/w = 0.1. We plot the exact solution
|dσ ∗/d(y/δ)|max (– – –) and the approximate solution ∇∗σ ∗|max (——). There is a reduction in
the maximum conductivity gradient when the centre stream is thin compared to the diffusion
thickness (h/δ � 1). The gradient is also reduced when the sheath stream is small compared
to the diffusion thickness ((w − h)/δ � 1).

approximate solution, we evaluate equation (A 1) at y = − h (which results in a
positive gradient), given as,
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where terms of the order of exp −((w/δ)2) and smaller have been dropped. Figure 20
shows a comparison of the exact solution for dσ ∗/d(y/δ)|max , where the roots of
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d2σ ∗/d(y/δ)2 are obtained numerically using the Ridder method, and the ∇∗σ ∗|max

approximation above evaluated at y = − h. The maximum normalized conductivity
gradients are shown as a function of the normalized centre stream width h/w with
an initial diffusion thickness of δ/w = 0.1. The maximum normalized conductivity
gradients are equal to unity for a wide range of the centre stream thicknesses,
0.2 <h/w < 0.8. Outside of this range the maximum gradients are reduced because
the centre or sheath flow stream widths are equal to, or smaller than, the diffusive
length scale. For the conditions of interest here, the y = − h approximation generates
errors for dσ ∗/d(y/δ)|max of less than 20% of the full range.
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Kirby, B. J. & Hasselbrink, E. F. 2004 Zeta potential of microfluidic substrates: 1. theory,
experimental techniques, and effects on separations. Electrophoresis 25, 187–202.

Koochesfahani, M., Cohn, R. & McKinnon, C. 2000 Simultaneous whole-field measurements of
velocity and concentration fields using a combination of mtv and lif. Meas. Sci. Technol. 11,
1289–300.

Lide, D. (ed.) 1997 CRC Handbook of Chemistry and Physics , 77th edn. CRC Press.

Lin, H., Storey, B. D., Oddy, M. H., Chen, C. H. & Santiago, J. G. 2004 Instability of electrokinetic
microchannel flows with conductivity gradients. Phys. Fluids 16, 1922–1935.

Locascio, L. E. 2004 Microfluidic mixing. Analyt. Bioanalyt. Chem. 379, 325–327.

Manz, A., Graber, N. & Widmer, H. M. 1990 Miniaturized total chemical-analysis systems – a
novel concept for chemical sensing. Sensors Actuators B Chem. 1, 244–248.

Meinhart, C. D., Wereley, S. T. & Santiago, J. 1999 PIV measurements of a microchannel flow.
Exps. Fluids 27, 414–419.

Melcher, J. R. & Taylor, G. I. 1969 Electrohydrodynamics – a review of role of interfacial shear
stresses. Annu. Rev. Fluid Mech. 1, 111–146.

Oddy, M. H. & Santiago, J. G. 2005 A multiple-species model for electrokinetic instability. Phys.
Fluids 17, 064108.

Oddy, M. H., Santiago, J. G. & Mikkelsen, J. C. 2001 Electrokinetic instability micromixing.
Analyt. Chem. 73, 5822–5832.

O’Donnell, B., Chen, J. N. & Lin, S. P. 2001 Transition from convective to absolute instability in
a liquid jet. Phys. Fluids 13, 2732–2734.

Posner, J. D. & Santiago, J. G. 2004 Convective electrokinetic flow instabilities in a cross-shaped
microchannel. In Eighth International Conference on Miniaturized Systems in Chemistry and
Life Sciences (ed. T. Laurell, J. Nilsson, K. J. D. Harrison & J. Kutter), vol. 1, pp. 623–625.
The Royal Society of Chemistry, Malmo, Sweden.

Probstein, R. F. 1994 Physicochemical Hydrodynamics , 2nd edn. Wiley.

Ramsey, J. M. 2001 Preface. In Micro Total Analysis Systems . Kluwer.

Ren, C. L. & Li, D. Q. 2004 Effects of spatial gradients of electrical conductivity on chip-based
sample injection processes. Analytic Chim. Acta 518, 59–68.

Ren, L. Q., Escobedo, C. & Li, D. 2001 Electro-Osmotic flow in a microcapillary with one solution
displacing another solution. J. Colloid Interface Sci. 242, 264–271.

Rhodes, P. H., Snyder, R. S. & Roberts, G. O. 1989 Electrohydrodynamic distortion of sample
streams in continuous-flow electrophoresis. J. Colloid Interface Sci. 129, 78–90.

Sadr, R., Yoda, M., Zheng, Z. & Conlisk, A. T. 2004 An experimental study of electro-osmotic
flow in rectangular microchannels. J. Fluid Mech. 506, 357–367.

Santiago, J. G. 2001 Electro-osmotic flows in microchannels with finite inertial and pressure forces.
Analyt. Chem. 73, 2353–2365.

Santiago, J. G., Wereley, S. T., Meinhart, C. D., Beebe, D. J. & Adrian, R. J. 1998 A particle
image velocimetry system for microfluidics. Exps. Fluids 25, 316–319.

Saville, D. A. 1997 Electrohydrodynamics: the Taylor–Melcher leaky dielectric model. Annu. Rev.
Fluid Mech. 29, 27–64.

Scales, P. J., Grieser, F., Healy, T. W., White, L. R. & Chan, D. Y. C. 1992 Electrokinetics of the
silica solution interface – a flat-plate streaming potential study. Langmuir 8, 965–974.

Shah, R. & London, A. 1978 Laminar Flow Forced Convection in Ducts , 2nd edn. Academic.

Shin, S. M., Kang, I. S. & Cho, Y.-K. 2005 Mixing enhancement by using electrokinetic instability
under time-periodic electric field. J. Micromech. Microengng. 15, 455–462.

Shultz-Lockyear, L. L., Colyer, C. L., Fan, Z. H., Roy, K. I. & Harrison, D. J. 1999 Effects of
injector geometry and sample matrix on injection and sample loading in integrated capillary
electrophoresis devices. Electrophoresis 20, 529–538.

Sinton, D. & Li, D. Q. 2003 Electro-osmotic velocity profiles in microchannels. Colloids Surfaces
A Physicochem. Engng Aspects 222, 273–283.

Stone, H. A., Stroock, A. D. & Ajdari, A. 2004 Engineering flows in small devices: microfluidics
toward a lab-on-a-chip. Annu. Rev. Fluid Mech. 36, 381–411.



42 J. D. Posner and J. G. Santiago

Storey, B. D., Tilley, B., Lin, H. & Santiago, J. G. 2005 Electrokinetic instabilities in thin
microchannels. Phys. Fluids 17.

Szymczyk, A., Fievet, P., Aoubiza, B., Simon, C. & Pagetti, J. 1999 An application of the
space charge model to the electrolyte conductivity inside a charged microporous membrane.
J. Membrane Sci. 161, 275–285.

Thormann, W., Mosher, R. A. & Bier, M. 1986 Experimental and theoretical dynamics of isoelectric
focusing elucidation of a general separation mechanism. J. Chromatography 351, 17–30.

Tokumaru, P. T. & Dimotakis, P. E. 1995 Image correlation velocimetry. Exps. Fluids 19, 1–15.

Vilkner, T., Janasek, D. & Manz, A. 2004 Micro total analysis systems. recent developments.
Analyt. Chem. 76, 3373–3385.

Yao, S. H., Hertzog, D. E., Zeng, S. L., Mikkelsen, J. C. & Santiago, J. G. 2003 Porous glass
electro-osmotic pumps: design and experiments. J. Colloid Interface Sci. 268, 143–153.


